Home
Class 12
MATHS
Statement I sin((2pi)/(7))+sin((4pi)/(7)...

Statement I `sin((2pi)/(7))+sin((4pi)/(7))+sin((8pi)/(7))=- 1/2`.
Statement II `cos. (2pi)/(7)+I sin . (2pi)/(7)` is complex 7th root of unity.

A

Both Statement I and Statement II are individually true and R is the correct explanation of Statement I.

B

Both Statement I and Statement II are individually true but Statement II is not the correct explanaton of Statement I.

C

Statement I is true but Statement II is false.

D

Statement I is false but Statement II is true.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the two statements: **Statement I:** \( \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right) = -\frac{1}{2} \) **Statement II:** \( \cos\left(\frac{2\pi}{7}\right) + i \sin\left(\frac{2\pi}{7}\right) \) is a complex 7th root of unity. ### Step 1: Evaluate Statement II The complex 7th roots of unity are given by: \[ 1, e^{i\frac{2\pi}{7}}, e^{i\frac{4\pi}{7}}, e^{i\frac{6\pi}{7}}, e^{i\frac{8\pi}{7}}, e^{i\frac{10\pi}{7}}, e^{i\frac{12\pi}{7}} \] We can express \( e^{i\frac{2\pi}{7}} \) using Euler's formula: \[ e^{i\frac{2\pi}{7}} = \cos\left(\frac{2\pi}{7}\right) + i \sin\left(\frac{2\pi}{7}\right) \] Thus, Statement II is true since \( e^{i\frac{2\pi}{7}} \) is indeed one of the 7th roots of unity. ### Step 2: Evaluate Statement I We need to check if: \[ \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right) = -\frac{1}{2} \] Using the identity \( \sin(\pi - x) = \sin(x) \), we can rewrite: \[ \sin\left(\frac{8\pi}{7}\right) = \sin\left(\pi - \frac{6\pi}{7}\right) = \sin\left(\frac{6\pi}{7}\right) \] Thus, we have: \[ \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{6\pi}{7}\right) \] Now, we know from the property of sine functions that: \[ \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{6\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right) + \sin\left(\frac{10\pi}{7}\right) + \sin\left(\frac{12\pi}{7}\right) = 0 \] This means: \[ \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{6\pi}{7}\right) = -\left(\sin\left(\frac{8\pi}{7}\right) + \sin\left(\frac{10\pi}{7}\right) + \sin\left(\frac{12\pi}{7}\right)\right) \] Since \( \sin\left(\frac{8\pi}{7}\right) = -\sin\left(\frac{6\pi}{7}\right) \), we can conclude: \[ \sin\left(\frac{2\pi}{7}\right) + \sin\left(\frac{4\pi}{7}\right) + \sin\left(\frac{8\pi}{7}\right) = 0 \] Thus, Statement I is false because it claims the sum equals \(-\frac{1}{2}\), while we have shown it equals \(0\). ### Conclusion - Statement I is **false**. - Statement II is **true**.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|13 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|20 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

the value of sin(pi/7)+sin((2pi)/7)+sin((3pi)/7) is

Prove that cos ((2pi)/7)+ cos ((4pi)/7) + cos ((6pi)/7) = - 1/2

sin^(-1)(sin((7pi)/4))

Prove that: sin ((pi)/(7))+sin((2pi)/(7)) + sin((8pi)/(7)) + sin((9pi)/(7))=0

3.Prove that (i) "cos((2pi)/7)*cos((4pi)/7)*cos((8pi)/7)=1/8

sin^(-1)(sin ((7pi)/6))

Value of sin""(pi)/(18)*sin""(5pi)/(18)*sin""(7 pi)/(18) =

sin(pi/18)*sin(5pi/18)*sin(7pi/18)

If A=sin((2pi)/7)+sin((4pi)/7)+sin((8pi)/7) and B=cos((2pi)/7)+cos((4pi)/7)+cos((8pi)/7) then sqrt(A^2+B^2) is equal to