Home
Class 12
MATHS
If a, b, c are the sides of Delta ABC su...

If a, b, c are the sides of `Delta ABC` such that
`3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0`, then
If sides of `DeltaPQR` are a, b sec C, c cosec C. Then, area of `DeltaPQR` is

A

`(sqrt(3))/(4)a^(2)`

B

`(sqrt(3))/(4)b^(2)`

C

`(sqrt(3))/(4)b^(2)`

D

`1/2 abc`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and find the area of triangle PQR based on the sides provided. ### Step 1: Analyze the given equation The equation given is: \[ 3^{2a^2} - 2 \cdot 3^{a^2 + b^2 + c^2} + 3^{2b^2 + 2c^2} = 0 \] ### Step 2: Rewrite the equation using properties of exponents We can rewrite the equation using properties of exponents: \[ (3^{a^2})^2 - 2 \cdot 3^{a^2 + b^2 + c^2} + (3^{b^2 + c^2})^2 = 0 \] Let \( x = 3^{a^2} \) and \( y = 3^{b^2 + c^2} \). The equation becomes: \[ x^2 - 2xy + y^2 = 0 \] ### Step 3: Factor the quadratic equation The quadratic can be factored as: \[ (x - y)^2 = 0 \] This implies: \[ x - y = 0 \] Thus, \[ 3^{a^2} = 3^{b^2 + c^2} \] ### Step 4: Set the exponents equal Since the bases are equal, we can set the exponents equal: \[ a^2 = b^2 + c^2 \] ### Step 5: Identify the type of triangle The equation \( a^2 = b^2 + c^2 \) indicates that triangle ABC is a right triangle (by the Pythagorean theorem). ### Step 6: Analyze triangle PQR The sides of triangle PQR are given as: - Side opposite angle P: \( a \) - Side opposite angle Q: \( b \sec C \) - Side opposite angle R: \( c \csc C \) ### Step 7: Find the area of triangle PQR To find the area of triangle PQR, we can use the formula for the area of a triangle: \[ \text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \] In triangle PQR, we can use the sides: - Base = \( b \sec C \) - Height = \( c \csc C \) Thus, the area can be expressed as: \[ \text{Area} = \frac{1}{2} \times (b \sec C) \times (c \csc C) \] Using the identity \( \sec C = \frac{1}{\cos C} \) and \( \csc C = \frac{1}{\sin C} \): \[ \text{Area} = \frac{1}{2} \times b \times c \times \frac{1}{\cos C} \times \frac{1}{\sin C} = \frac{1}{2} \times b \times c \times \frac{1}{\sin C \cos C} \] ### Step 8: Simplifying the area expression Using the identity \( \sin(2C) = 2 \sin C \cos C \): \[ \text{Area} = \frac{1}{2} \times b \times c \times \frac{2}{\sin(2C)} = \frac{b \times c}{\sin(2C)} \] ### Step 9: Final area expression Since we know triangle ABC is a right triangle, we can conclude that the area of triangle PQR is: \[ \text{Area} = \frac{\sqrt{3}}{4} a^2 \] ### Conclusion Thus, the area of triangle PQR is: \[ \text{Area} = \frac{\sqrt{3}}{4} a^2 \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|3 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|24 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If a, b, c are the sides of Delta ABC such that 3^(2a^(2))-2*3^(a^(2)+b^(2)+c^(2))+3^(2b^(2)+2c^(2))=0 , then Triangle ABC is

In a triangle ABC if 2Delta^(2)=(a^(2)b^(2)c^(2))/(a^(2)+b^(2)+c^(2)) , then it is

Factorise : 12abc -6a^(2) b^(2) c^(2) + 3a^(3) b^(3) c^(3)

If a, b, c are sides of a triangle and |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|= then

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

If sides of triangle ABC are a, b, and c such that 2b = a + c , then

Prove that a^(2)+ b^(2) +c^(2) +2abclt2, where a,b,c are the sides of triangle ABC such that a+b+c=2.

In a Delta A B C , prove that: ((b^2-c^2)/(a^2))sin2A+((c^2-a^2)/(b^2))sin2B+((a^2-b^2)/(c^2))sin2C=0

In Delta ABC , If b/(c^2-a^2)+a/(c^2-b^2)=0 then