Home
Class 12
MATHS
If a, b, c and k are real constants and ...

If a, b, c and k are real constants and `alpha, beta, gamma` are variables subject to the condition that `a tanalpha + btanbeta+ c tangamma=k` , then prove using vectors that `tan^2 alpha + tan^2 beta+ tan^2gamma>= k^2 /(a^2 + b^2 + c^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma \geq \frac{k^2}{a^2 + b^2 + c^2} \) given the condition \( a \tan \alpha + b \tan \beta + c \tan \gamma = k \), we will use the concept of vectors. ### Step-by-step Solution: 1. **Define Vectors**: Let \( \mathbf{u} = (a, b, c) \) and \( \mathbf{v} = (\tan \alpha, \tan \beta, \tan \gamma) \). 2. **Dot Product Representation**: The dot product of these vectors can be expressed as: \[ \mathbf{u} \cdot \mathbf{v} = a \tan \alpha + b \tan \beta + c \tan \gamma = k \] 3. **Magnitude of Vectors**: The magnitudes of the vectors are: \[ |\mathbf{u}| = \sqrt{a^2 + b^2 + c^2} \] \[ |\mathbf{v}| = \sqrt{\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma} \] 4. **Cosine of the Angle**: The cosine of the angle \( \theta \) between the vectors \( \mathbf{u} \) and \( \mathbf{v} \) is given by: \[ \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| |\mathbf{v}|} \] 5. **Substituting the Dot Product**: Substituting the dot product into the cosine formula gives: \[ \cos \theta = \frac{k}{\sqrt{a^2 + b^2 + c^2} \cdot \sqrt{\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma}} \] 6. **Squaring Both Sides**: Squaring both sides results in: \[ \cos^2 \theta = \frac{k^2}{(a^2 + b^2 + c^2)(\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma)} \] 7. **Rearranging the Equation**: Rearranging gives: \[ (a^2 + b^2 + c^2) \cos^2 \theta = \frac{k^2}{\tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma} \] 8. **Considering the Range of Cosine**: Since \( \cos^2 \theta \) is always between 0 and 1, we have: \[ (a^2 + b^2 + c^2) \cos^2 \theta \leq a^2 + b^2 + c^2 \] 9. **Final Inequality**: Thus, we can conclude: \[ \tan^2 \alpha + \tan^2 \beta + \tan^2 \gamma \geq \frac{k^2}{a^2 + b^2 + c^2} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|24 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Statement 1. If a,b,c and K are constant quantities and alpha, beta, gamma are variables satisfying the relation a tan alpha+b tan beta+c tan gamma=K, then the maximum value of tan^2alpha+tan^2beta+tan^2gamma= K^2/(a^2+b^2+c^2), Statement 2: If a_1, a_2, a_3 and b_1, b_2, b_3 are real, then (a_1^2+a_2^2+a_3^2)(b_1^2+b_2^2+b_3^2)ge(a_1b_1+a_2b_2+a_3b_3)^2 (A) Both Statement 1 and Statement 2 are true and Statement 2 is the correct explanation of Statement 1 (B) Both Statement 1 and Statement 2 are true and Statement 2 is not the correct explanation of Statement 1 (C) Statement 1 is true but Statement 2 is false. (D) Statement 1 is false but Statement 2 is true

lf cos^2 alpha -sin^2 alpha = tan^2 beta , then show that tan^2 alpha = cos^2 beta-sin^2 beta .

If tan beta = 3 tan alpha, prove that tan (alpha + beta) = (2sin 2beta)/(1+cos 2beta)

(1+tan alpha tan beta)^2 + (tan alpha - tan beta)^2 =

Show that (sin (alpha + beta))/( sin (alpha + beta)) = 2, given that tan alpha = 2 tan beta.

If alpha+beta+gamma=2pi , then show that tan.alpha/2 + tan.beta/2 + tan.gamma/2 = tan.alpha/2 tan.beta/2 tan.gamma/2 .

If tan^2 alpha tan^2 beta + tan^2 beta tan^2 gamma + tan^2 gamma tan^2 alpha + 2 tan^2 alpha tan^2 beta tan^2 gamma = 1 then sin^2 alpha + sin^2 beta + sin^2 gamma =

If a right angle be divided into three parts alpha, beta and gamma , prove that cot alpha = (tan beta + tan gamma)/(1-tan beta tan gamma) .

If alpha, beta, gamma, delta satisfy the equation tan(x+(pi)/(4))=3 tan3x , then tanalpha+tanbeta+tangamma+tandelta is equal to :

If alpha,beta,gamma are ccute angles and costheta=sinbeta//sinalpha,cosvarphi=singammasinalphaa n dcos(theta-varphi)=sinbetasingamma , then the value of tan^2alpha-tan^2beta-tan^2gamma is equal to -1 (b) 0 (c) 1 (d) 2

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Subjective Type Questions)
  1. Prove that, cot 7 1/2 ^@ or tan 82 1/2 ^@ = (sqrt(3)+sqrt(2))(sqrt(2)+...

    Text Solution

    |

  2. If m sin (alpha+beta) = cos (alpha-beta), prove that (1)/(1- m sin 2...

    Text Solution

    |

  3. If alpha+beta+gamma=pi and tan((beta+gamma-alpha)/4)tan((gamma+alpha-b...

    Text Solution

    |

  4. The set of values of a for which the equation Sin^4 x + Cos^4 x = a ha...

    Text Solution

    |

  5. If aa n db are positive quantities such that a > b , the minimum value...

    Text Solution

    |

  6. If a, b, c and k are real constants and alpha, beta, gamma are variab...

    Text Solution

    |

  7. If (x)/(tan(theta+alpha))=(y)/(tan(theta+beta))=(z)/(tan(theta+gamma))...

    Text Solution

    |

  8. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  9. Eliminate theta from the equations tan(n theta+alpha)-tan(n theta+b...

    Text Solution

    |

  10. If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,...

    Text Solution

    |

  11. In any DeltaABC, prove that Sigma (sqrt(sinA))/(sqrt(sinB)+sqrt(sinC...

    Text Solution

    |

  12. If 2(cos ( alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)+3=0, prove tha...

    Text Solution

    |

  13. If the quadratic equation , 4^(sec^(2)alpha) x^(2) + 2x + (beta^(2)-...

    Text Solution

    |

  14. If (cos theta(1))/(cos theta(2))+(sin theta(1))/(sin theta(2))=(cos th...

    Text Solution

    |

  15. Prove that sum(k=1)^(n-1) ""^(n)C(k)[cos k x. cos (n+k)x+sin(n-k)x.s...

    Text Solution

    |

  16. Total number of solution for the equation x^(2)-3[sin(x-(pi)/6)]=3 is ...

    Text Solution

    |

  17. In aDeltaABC, prove that Sigma(r=0)^(n)""^(n)C(r)a^(r)b^(n-r) cos ( ...

    Text Solution

    |

  18. Resolve Z^5+ 1 into linear & quadratic factors with real coefficients...

    Text Solution

    |

  19. Prove that the roots of the equation 8x^(3)-4x^(2)-4x+1=0 " are " co...

    Text Solution

    |