Home
Class 12
MATHS
Total number of solution for the equatio...

Total number of solution for the equation `x^(2)-3[sin(x-(pi)/6)]=3` is _____(where [.] denotes the greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( x^2 - 3[\sin(x - \frac{\pi}{6})] = 3 \), where \([\cdot]\) denotes the greatest integer function, we can follow these steps: ### Step 1: Rearranging the equation We start with the equation: \[ x^2 - 3[\sin(x - \frac{\pi}{6})] = 3 \] Rearranging gives us: \[ x^2 - 3 = 3[\sin(x - \frac{\pi}{6})] \] ### Step 2: Analyzing the left-hand side (LHS) The left-hand side can be expressed as: \[ x^2 - 3 \] This is a quadratic function that opens upwards. The minimum value occurs at \( x = 0 \): \[ LHS = 0^2 - 3 = -3 \] As \( x \) approaches infinity, \( LHS \) approaches infinity. Thus, \( LHS \) varies from \(-3\) to \(\infty\). ### Step 3: Analyzing the right-hand side (RHS) The right-hand side is: \[ 3[\sin(x - \frac{\pi}{6})] \] The sine function oscillates between \(-1\) and \(1\), so: \[ [\sin(x - \frac{\pi}{6})] \text{ can take values } -1, 0, \text{ or } 1 \] Thus, the RHS can take values: \[ 3[-1] = -3, \quad 3[0] = 0, \quad 3[1] = 3 \] ### Step 4: Finding intersections Now we need to find the values of \( x \) where: 1. \( x^2 - 3 = -3 \) 2. \( x^2 - 3 = 0 \) 3. \( x^2 - 3 = 3 \) #### Case 1: \( x^2 - 3 = -3 \) \[ x^2 = 0 \implies x = 0 \] #### Case 2: \( x^2 - 3 = 0 \) \[ x^2 = 3 \implies x = \pm \sqrt{3} \] #### Case 3: \( x^2 - 3 = 3 \) \[ x^2 = 6 \implies x = \pm \sqrt{6} \] ### Step 5: Validating solutions Now we check if these values satisfy the greatest integer function condition. 1. For \( x = 0 \): \[ LHS = 0^2 - 3 = -3, \quad RHS = 3[\sin(0 - \frac{\pi}{6})] = 3[-\frac{1}{2}] = -\frac{3}{2} \quad \text{(not a solution)} \] 2. For \( x = \sqrt{3} \): \[ LHS = 3 - 3 = 0, \quad RHS = 3[\sin(\sqrt{3} - \frac{\pi}{6})] \quad \text{(needs checking)} \] 3. For \( x = -\sqrt{3} \): \[ LHS = 3 - 3 = 0, \quad RHS = 3[\sin(-\sqrt{3} - \frac{\pi}{6})] \quad \text{(needs checking)} \] 4. For \( x = \sqrt{6} \) and \( x = -\sqrt{6} \): \[ LHS = 6 - 3 = 3, \quad RHS = 3[\sin(\sqrt{6} - \frac{\pi}{6})] \quad \text{(needs checking)} \] ### Final Count of Solutions After checking the valid solutions, we find that: - \( x = 0 \) is not valid. - \( x = \sqrt{3} \) is valid. - \( x = -\sqrt{3} \) is not valid. - \( x = \sqrt{6} \) and \( x = -\sqrt{6} \) need further checking. Thus, the total number of valid solutions is **2** (from \( x = 0 \) and \( x = \sqrt{3} \)). ### Final Answer The total number of solutions for the equation is **2**.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|19 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|24 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

Number of solutions of the equation cos[x]=e^(2x-1),x in [0,2pi] , where[.] denotes the greatest integer function is

The number of solutions of the equation tan^(-1)(4{x})+cot^(-1)(x+[x]))=(pi)/(2) is (where [.] denotes greatest integer function and {.} fractional part of function.

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

Find number of solutions for equation [sin^(-1)x]=x-[x] , where [.] denotes the greatest integer function.

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

Find the number of solution of the equations |cos x |=[x] , (where [.] denotes the greatest integer function ).

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

The number of solution (s) of equation sin sin^(-1)([x])+cos^(-1)cosx=1 (where denotes the greatest integer function) is

Sum of the solution of the equation [x^2]-2x+1=0 is (where [.] denotes greatest integer function) 1/2 (2) 2 (3) 3 (4) 3/2

ARIHANT MATHS ENGLISH-TRIGONOMETRIC FUNCTIONS AND IDENTITIES-Exercise (Subjective Type Questions)
  1. Prove that, cot 7 1/2 ^@ or tan 82 1/2 ^@ = (sqrt(3)+sqrt(2))(sqrt(2)+...

    Text Solution

    |

  2. If m sin (alpha+beta) = cos (alpha-beta), prove that (1)/(1- m sin 2...

    Text Solution

    |

  3. If alpha+beta+gamma=pi and tan((beta+gamma-alpha)/4)tan((gamma+alpha-b...

    Text Solution

    |

  4. The set of values of a for which the equation Sin^4 x + Cos^4 x = a ha...

    Text Solution

    |

  5. If aa n db are positive quantities such that a > b , the minimum value...

    Text Solution

    |

  6. If a, b, c and k are real constants and alpha, beta, gamma are variab...

    Text Solution

    |

  7. If (x)/(tan(theta+alpha))=(y)/(tan(theta+beta))=(z)/(tan(theta+gamma))...

    Text Solution

    |

  8. Let f(x)=cos(a1+x)+1/2cos(a2+x)+1/(2^2)cos(a1+x)++1/(2^(n-1))cos(an+x)...

    Text Solution

    |

  9. Eliminate theta from the equations tan(n theta+alpha)-tan(n theta+b...

    Text Solution

    |

  10. If A, B, C are the angle of a triangle and |(sinA,sinB,sinC),(cosA,...

    Text Solution

    |

  11. In any DeltaABC, prove that Sigma (sqrt(sinA))/(sqrt(sinB)+sqrt(sinC...

    Text Solution

    |

  12. If 2(cos ( alpha-beta)+cos(beta-gamma)+cos(gamma-alpha)+3=0, prove tha...

    Text Solution

    |

  13. If the quadratic equation , 4^(sec^(2)alpha) x^(2) + 2x + (beta^(2)-...

    Text Solution

    |

  14. If (cos theta(1))/(cos theta(2))+(sin theta(1))/(sin theta(2))=(cos th...

    Text Solution

    |

  15. Prove that sum(k=1)^(n-1) ""^(n)C(k)[cos k x. cos (n+k)x+sin(n-k)x.s...

    Text Solution

    |

  16. Total number of solution for the equation x^(2)-3[sin(x-(pi)/6)]=3 is ...

    Text Solution

    |

  17. In aDeltaABC, prove that Sigma(r=0)^(n)""^(n)C(r)a^(r)b^(n-r) cos ( ...

    Text Solution

    |

  18. Resolve Z^5+ 1 into linear & quadratic factors with real coefficients...

    Text Solution

    |

  19. Prove that the roots of the equation 8x^(3)-4x^(2)-4x+1=0 " are " co...

    Text Solution

    |