Home
Class 12
MATHS
Find the vector component of a vector 2h...

Find the vector component of a vector `2hat(i)+3hat(j)+6hat(k)` along and perpendicular to the non-zero vector `2hat(i)+hat(j)+2hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector component of the vector \( \mathbf{a} = 2\hat{i} + 3\hat{j} + 6\hat{k} \) along and perpendicular to the vector \( \mathbf{b} = 2\hat{i} + \hat{j} + 2\hat{k} \), we will follow these steps: ### Step 1: Find the unit vector of \( \mathbf{b} \) The unit vector \( \hat{b} \) is given by: \[ \hat{b} = \frac{\mathbf{b}}{|\mathbf{b}|} \] First, we calculate the magnitude of \( \mathbf{b} \): \[ |\mathbf{b}| = \sqrt{(2^2) + (1^2) + (2^2)} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] Now, we can find the unit vector: \[ \hat{b} = \frac{2\hat{i} + \hat{j} + 2\hat{k}}{3} = \frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k} \] ### Step 2: Find the component of \( \mathbf{a} \) along \( \mathbf{b} \) The component of \( \mathbf{a} \) along \( \mathbf{b} \) is given by the formula: \[ \text{Component along } \mathbf{b} = (\mathbf{a} \cdot \hat{b}) \hat{b} \] First, we compute the dot product \( \mathbf{a} \cdot \hat{b} \): \[ \mathbf{a} \cdot \hat{b} = (2\hat{i} + 3\hat{j} + 6\hat{k}) \cdot \left(\frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}\right) \] Calculating the dot product: \[ = 2 \cdot \frac{2}{3} + 3 \cdot \frac{1}{3} + 6 \cdot \frac{2}{3} = \frac{4}{3} + 1 + 4 = \frac{4}{3} + \frac{3}{3} + \frac{12}{3} = \frac{19}{3} \] Now, we can find the component along \( \mathbf{b} \): \[ \text{Component along } \mathbf{b} = \frac{19}{3} \hat{b} = \frac{19}{3} \left(\frac{2}{3}\hat{i} + \frac{1}{3}\hat{j} + \frac{2}{3}\hat{k}\right) = \frac{38}{9}\hat{i} + \frac{19}{9}\hat{j} + \frac{38}{9}\hat{k} \] ### Step 3: Find the component of \( \mathbf{a} \) perpendicular to \( \mathbf{b} \) The component of \( \mathbf{a} \) perpendicular to \( \mathbf{b} \) can be found using the formula: \[ \text{Component perpendicular to } \mathbf{b} = \mathbf{a} - \text{Component along } \mathbf{b} \] Substituting the values: \[ \text{Component perpendicular to } \mathbf{b} = (2\hat{i} + 3\hat{j} + 6\hat{k}) - \left(\frac{38}{9}\hat{i} + \frac{19}{9}\hat{j} + \frac{38}{9}\hat{k}\right) \] Calculating this gives: \[ = \left(2 - \frac{38}{9}\right)\hat{i} + \left(3 - \frac{19}{9}\right)\hat{j} + \left(6 - \frac{38}{9}\right)\hat{k} \] Converting the constants to fractions: \[ = \left(\frac{18}{9} - \frac{38}{9}\right)\hat{i} + \left(\frac{27}{9} - \frac{19}{9}\right)\hat{j} + \left(\frac{54}{9} - \frac{38}{9}\right)\hat{k} \] This simplifies to: \[ = \left(-\frac{20}{9}\right)\hat{i} + \left(\frac{8}{9}\right)\hat{j} + \left(\frac{16}{9}\right)\hat{k} \] ### Final Result Thus, the components are: - **Component of \( \mathbf{a} \) along \( \mathbf{b} \)**: \( \frac{38}{9}\hat{i} + \frac{19}{9}\hat{j} + \frac{38}{9}\hat{k} \) - **Component of \( \mathbf{a} \) perpendicular to \( \mathbf{b} \)**: \( -\frac{20}{9}\hat{i} + \frac{8}{9}\hat{j} + \frac{16}{9}\hat{k} \)
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|18 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise JEE Type Solved Examples: Passage Based Type Questions|3 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the value of m so that the vector 3hat(i)-2hat(j)+hat(k) may be perpendicular to the vector 2hat(i)+6hat(j)+mhat(k) .

Unit vector along the vector hat(i) + hat(j) + hat(k) is

If a vector 2hat(i)+3hat(j)+8hat(k) is perpendicular to the vector 4hat(j)-4hat(i)+alpha hat(k) . Then the value of alpha is

Find the vector equation of a plane passing through a point having position vector 2 hat i- hat j+ hat k and perpendicular to the vector 4 hat i+2 hat j-3 hat kdot

The projection of the vector vec( a) = 2 hat(i) - hat(j) +hat(k) along the vector vec(b) = hat(i) + 2 hat(j)+ 2hat(k) is

Find the unit vector of the vector vec(r ) = 4hat(i) - 2hat(j) + 3 hat(k)

The component of vector A= 2hat(i)+3hat(j) along the vector hat(i)+hat(j) is

Find the projection of the vector vec(P) = 2hat(i) - 3hat(j) + 6 hat(k) on the vector vec(Q) = hat(i) + 2hat(j) + 2hat(k)

Statement 1: A component of vector vec b=4 hat i+2 hat j+3 hat k in the direction perpendicular to the direction of vector vec a= hat i+ hat j+ hat ki s hat i- hat jdot Statement 2: A component of vector in the direction of vec a= hat i+ hat j+ hat k is 2 hat i+2 hat j+2 hat kdot

Find the components of vector vec(a)=3hat(i)+4hat(j) along the direction of vectors hat(i)+hat(j) & hat(i)-hat(j)