Home
Class 12
MATHS
Find the values of gamma and mu for whic...

Find the values of `gamma` and `mu` for which `(2hati+6hatj+27hatk)xx(hati+gamma hatj+mu hatk)=vec0`

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \gamma \) and \( \mu \) for which the cross product \[ (2\hat{i} + 6\hat{j} + 27\hat{k}) \times (\hat{i} + \gamma \hat{j} + \mu \hat{k}) = \vec{0} \] we can follow these steps: ### Step 1: Set up the cross product The cross product can be expressed as a determinant: \[ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \gamma & \mu \end{vmatrix} \] ### Step 2: Calculate the determinant Using the determinant formula for a 3x3 matrix, we can expand this: \[ = \hat{i} \begin{vmatrix} 6 & 27 \\ \gamma & \mu \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & 27 \\ 1 & \mu \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 6 \\ 1 & \gamma \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \( \hat{i} \): \[ 6\mu - 27\gamma \] 2. For \( -\hat{j} \): \[ 2\mu - 27 \] 3. For \( \hat{k} \): \[ 2\gamma - 6 \] Putting it all together, we have: \[ (6\mu - 27\gamma)\hat{i} - (2\mu - 27)\hat{j} + (2\gamma - 6)\hat{k} \] ### Step 3: Set the cross product equal to zero Since the cross product is equal to the zero vector, we can set each component to zero: 1. \( 6\mu - 27\gamma = 0 \) (Equation 1) 2. \( -2\mu + 27 = 0 \) (Equation 2) 3. \( 2\gamma - 6 = 0 \) (Equation 3) ### Step 4: Solve the equations **From Equation 2:** \[ -2\mu + 27 = 0 \implies 2\mu = 27 \implies \mu = \frac{27}{2} \] **From Equation 3:** \[ 2\gamma - 6 = 0 \implies 2\gamma = 6 \implies \gamma = 3 \] ### Step 5: Verify the results Substituting \( \mu = \frac{27}{2} \) and \( \gamma = 3 \) back into Equation 1: \[ 6\left(\frac{27}{2}\right) - 27(3) = 81 - 81 = 0 \] This confirms that our values are correct. ### Final Values Thus, the values are: \[ \mu = \frac{27}{2}, \quad \gamma = 3 \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Prove that: (2hati+3hatj)xx(hati+2hatj)=hatk

The sum of the distinct real values of mu , for which the vectors, mu hati + hatj + hatk, hati + mu hatj + hatk, hati + hatj + muhatk are coplanar, is

The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk+lambda_(1)(hati-hatj+mu hatk) and vec r=5hati-2hatj+hatk+lambda_(2)(hati+mu hatj+2hatk) are coplanar is/are :

The value(s) of mu for which the straight lines vecr=3hati-2hatj-4hatk+lambda_(1)(hati-hatj+mu hatk) and vec r=5hati-2hatj+hatk+lambda_(2)(hati+mu hatj+2hatk) are coplanar is/are :

The value of hati.(hatj xx hatk) + hatj.(hati xx hatk) + hatk.( hati xx hatj) is

Find the value of lamda so that the two vectors 2hati+3hatj-hatk and -4hati-6hatj+lamda hatk are parallel

Find the value of lamda so that the two vectors 2hati+3hatj-hatk and -4hati-6hatj+lamda hatk are Perpendicular to each other

Find the value of |(hati+hatj)xx(hati+2hatj+hatk)|

Find the values of . (a) (4hatj) xx (-6hatk) (b) (3hatj).(-4hatj) (c) (2hati) - (-4hatk) .

The value of lamda for which the four points 2hati+3hatj-hatk,hati+2hatj+3hatk,3hati+4hatj-2hatk and hati-lamdahatj+6hatk are coplanar.

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise For Session 2
  1. Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 h...

    Text Solution

    |

  2. Find the values of gamma and mu for which (2hati+6hatj+27hatk)xx(hati+...

    Text Solution

    |

  3. If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j...

    Text Solution

    |

  4. Prove that ( vec a.hat i)( vec axx hat i)+( vec a.j)( vec axx hat j)+(...

    Text Solution

    |

  5. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  6. If ( vec axx vec b)^2+( vec a.vec b)^2=144 and | vec a|=4, then find t...

    Text Solution

    |

  7. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  8. Let the vectors vec a and vec b be such that | vec a|=3 and | vec b|=...

    Text Solution

    |

  9. If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

    Text Solution

    |

  10. Find a unit vector perpendicular to the plane of two vectors a=hat(i)-...

    Text Solution

    |

  11. Find a vector of magnitude 15, which is perpendicular to both the vect...

    Text Solution

    |

  12. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  13. Let A,B and C be unit vectors . Suppuse that A.B=A.c=O and that the an...

    Text Solution

    |

  14. Find the area of the triangle whose adjacent sides are determined by t...

    Text Solution

    |

  15. Find the area of parallelogram whose adjacent sides are represented by...

    Text Solution

    |

  16. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  17. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  18. Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(...

    Text Solution

    |