Home
Class 12
MATHS
If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2...

If `a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k)`, then find the value of `(atimesb)*(atimesc)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \((\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c})\) given the vectors: \[ \mathbf{a} = 2\hat{i} + 3\hat{j} - \hat{k} \] \[ \mathbf{b} = -\hat{i} + 2\hat{j} - 4\hat{k} \] \[ \mathbf{c} = \hat{i} + \hat{j} + \hat{k} \] ### Step 1: Calculate \(\mathbf{a} \times \mathbf{b}\) To find \(\mathbf{a} \times \mathbf{b}\), we use the determinant of a matrix formed by the unit vectors and the components of \(\mathbf{a}\) and \(\mathbf{b}\): \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ -1 & 2 & -4 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 3 & -1 \\ 2 & -4 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ -1 & -4 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix} \] Calculating the minors: 1. \(\begin{vmatrix} 3 & -1 \\ 2 & -4 \end{vmatrix} = (3)(-4) - (-1)(2) = -12 + 2 = -10\) 2. \(\begin{vmatrix} 2 & -1 \\ -1 & -4 \end{vmatrix} = (2)(-4) - (-1)(-1) = -8 - 1 = -9\) 3. \(\begin{vmatrix} 2 & 3 \\ -1 & 2 \end{vmatrix} = (2)(2) - (3)(-1) = 4 + 3 = 7\) Putting it all together: \[ \mathbf{a} \times \mathbf{b} = -10\hat{i} + 9\hat{j} + 7\hat{k} \] ### Step 2: Calculate \(\mathbf{a} \times \mathbf{c}\) Now, we calculate \(\mathbf{a} \times \mathbf{c}\): \[ \mathbf{a} \times \mathbf{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ 1 & 1 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \hat{i} \begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} \] Calculating the minors: 1. \(\begin{vmatrix} 3 & -1 \\ 1 & 1 \end{vmatrix} = (3)(1) - (-1)(1) = 3 + 1 = 4\) 2. \(\begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (-1)(1) = 2 + 1 = 3\) 3. \(\begin{vmatrix} 2 & 3 \\ 1 & 1 \end{vmatrix} = (2)(1) - (3)(1) = 2 - 3 = -1\) Putting it all together: \[ \mathbf{a} \times \mathbf{c} = 4\hat{i} - 3\hat{j} - 1\hat{k} \] ### Step 3: Calculate \((\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c})\) Now we need to find the dot product: \[ (\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c}) = (-10\hat{i} + 9\hat{j} + 7\hat{k}) \cdot (4\hat{i} - 3\hat{j} - 1\hat{k}) \] Calculating the dot product: \[ = (-10)(4) + (9)(-3) + (7)(-1) \] \[ = -40 - 27 - 7 \] \[ = -74 \] ### Final Answer Thus, the value of \((\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c})\) is \(-74\). ---
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Let a=hat(i)+hat(j)+hat(k), b=-hat(i)+hat(j)+hat(k), c=hat(i)-hat(j)+hat(k) and d=hat(i)+hat(j)-hat(k) . Then, the line of intersection of planes one determined by a, b and other determined by c, d is perpendicular to

If vec(A)=3hat(i)+hat(j)+2hat(k) and vec(B)=2hat(i)-2hat(j)+4hat(k), then find the value of |vec(A)xxvec(B)|.

Find the altitude of a parallelopiped whose three conterminous edges are verctors A=hat(i)+hat(j)+hat(k), B=2hat(i)+4hat(j)-hat(k) and C=hat(i)+hat(j)+3hat(k) with A and B as the sides of the base of the parallelopiped.

Examine whether the vectors a=2hat(i)+3hat(j)+2hat(k), b=hat(i)-hat(j)+2hat(k) and c=4hat(i)+2hat(j)+4hat(k) form a left handed or a right handed system.

Find the value of lamda , if the points with position vectors 3hat(i)- 2hat(j)- hat(k), 2hat(i) + 3hat(j)- 4hat(k), -hat(i) + hat(j) + 2hat(k), 4hat(i) + 5hat(j) + lamda hat(k) are coplanar.

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Consider the following 3lines in space L_1:r=3hat(i)-hat(j)+hat(k)+lambda(2hat(i)+4hat(j)-hat(k)) L_2: r=hat(i)+hat(j)-3hat(k)+mu(4hat(i)+2hat(j)+4hat(k)) L_3:=3hat(i)+2hat(j)-2hat(k)+t(2hat(i)+hat(j)+2hat(k)) Then, which one of the following part(s) is/ are in the same plane?

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise For Session 2
  1. Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 h...

    Text Solution

    |

  2. Find the values of gamma and mu for which (2hati+6hatj+27hatk)xx(hati+...

    Text Solution

    |

  3. If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j...

    Text Solution

    |

  4. Prove that ( vec a.hat i)( vec axx hat i)+( vec a.j)( vec axx hat j)+(...

    Text Solution

    |

  5. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  6. If ( vec axx vec b)^2+( vec a.vec b)^2=144 and | vec a|=4, then find t...

    Text Solution

    |

  7. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  8. Let the vectors vec a and vec b be such that | vec a|=3 and | vec b|=...

    Text Solution

    |

  9. If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

    Text Solution

    |

  10. Find a unit vector perpendicular to the plane of two vectors a=hat(i)-...

    Text Solution

    |

  11. Find a vector of magnitude 15, which is perpendicular to both the vect...

    Text Solution

    |

  12. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  13. Let A,B and C be unit vectors . Suppuse that A.B=A.c=O and that the an...

    Text Solution

    |

  14. Find the area of the triangle whose adjacent sides are determined by t...

    Text Solution

    |

  15. Find the area of parallelogram whose adjacent sides are represented by...

    Text Solution

    |

  16. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  17. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  18. Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(...

    Text Solution

    |