Home
Class 12
MATHS
Find a unit vector perpendicular to the ...

Find a unit vector perpendicular to the plane of two vectors `a=hat(i)-hat(j)+2hat(k) and b=2hat(i)+3hat(j)-hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector perpendicular to the plane formed by the vectors \( \mathbf{a} = \hat{i} - \hat{j} + 2\hat{k} \) and \( \mathbf{b} = 2\hat{i} + 3\hat{j} - \hat{k} \), we can follow these steps: ### Step 1: Calculate the Cross Product The cross product \( \mathbf{C} = \mathbf{a} \times \mathbf{b} \) will give us a vector that is perpendicular to both \( \mathbf{a} \) and \( \mathbf{b} \). Using the determinant method: \[ \mathbf{C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 2 & 3 & -1 \end{vmatrix} \] ### Step 2: Expand the Determinant Calculating the determinant: \[ \mathbf{C} = \hat{i} \begin{vmatrix} -1 & 2 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} -1 & 2 \\ 3 & -1 \end{vmatrix} = (-1)(-1) - (2)(3) = 1 - 6 = -5 \) 2. \( \begin{vmatrix} 1 & 2 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (2)(2) = -1 - 4 = -5 \) 3. \( \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix} = (1)(3) - (-1)(2) = 3 + 2 = 5 \) Putting it all together: \[ \mathbf{C} = -5\hat{i} + 5\hat{j} + 5\hat{k} \] ### Step 3: Write the Resulting Vector Thus, we have: \[ \mathbf{C} = -5\hat{i} + 5\hat{j} + 5\hat{k} \] ### Step 4: Find the Magnitude of \( \mathbf{C} \) To find the unit vector, we first need the magnitude of \( \mathbf{C} \): \[ |\mathbf{C}| = \sqrt{(-5)^2 + 5^2 + 5^2} = \sqrt{25 + 25 + 25} = \sqrt{75} = 5\sqrt{3} \] ### Step 5: Calculate the Unit Vector Now, the unit vector \( \mathbf{u} \) in the direction of \( \mathbf{C} \) is given by: \[ \mathbf{u} = \frac{\mathbf{C}}{|\mathbf{C}|} = \frac{-5\hat{i} + 5\hat{j} + 5\hat{k}}{5\sqrt{3}} = \frac{-\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}} \] ### Final Answer The unit vector perpendicular to the plane of vectors \( \mathbf{a} \) and \( \mathbf{b} \) is: \[ \mathbf{u} = \frac{-\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to each of the vectors hat(i)+2hat(j)-3hat(k) and hat(i)-2hat(j)+hat(k) .

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .

What is the unit vector perpendicular to the following Vector 2hat(i)+2hat(j)-hat(k) and 6hat(i)-3hat(j)+2hat(k)?

Find the unit vector perpendicular to the plane vec rdot(2 hat i+ hat j+2 hat k)=5.

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the scalar and vector paroducts of two vectors. a=(3hat(i)-4hat(j)+5hat(k)) " and " b=(-2hat (i) +hat(j)-3hat(k))

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Find a unit vector perpendicular to the plane containing the vectors vec a=2 hat i+ hat j+ hat k\ a n d\ vec b= hat i+2 hat j+ hat kdot

Find the unit vector perpendicular the plane rcdot(2hat(i)+hat(j)+2hat(k))=5 .

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise For Session 2
  1. Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 h...

    Text Solution

    |

  2. Find the values of gamma and mu for which (2hati+6hatj+27hatk)xx(hati+...

    Text Solution

    |

  3. If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j...

    Text Solution

    |

  4. Prove that ( vec a.hat i)( vec axx hat i)+( vec a.j)( vec axx hat j)+(...

    Text Solution

    |

  5. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  6. If ( vec axx vec b)^2+( vec a.vec b)^2=144 and | vec a|=4, then find t...

    Text Solution

    |

  7. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  8. Let the vectors vec a and vec b be such that | vec a|=3 and | vec b|=...

    Text Solution

    |

  9. If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

    Text Solution

    |

  10. Find a unit vector perpendicular to the plane of two vectors a=hat(i)-...

    Text Solution

    |

  11. Find a vector of magnitude 15, which is perpendicular to both the vect...

    Text Solution

    |

  12. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  13. Let A,B and C be unit vectors . Suppuse that A.B=A.c=O and that the an...

    Text Solution

    |

  14. Find the area of the triangle whose adjacent sides are determined by t...

    Text Solution

    |

  15. Find the area of parallelogram whose adjacent sides are represented by...

    Text Solution

    |

  16. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  17. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  18. Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(...

    Text Solution

    |