Home
Class 12
MATHS
Find a vector of magnitude 15, which is ...

Find a vector of magnitude 15, which is perpendicular to both the vectors `(4hat(i) -hat(j)+8hat(k)) and (-hat(j)+hat(k)).`

Text Solution

AI Generated Solution

The correct Answer is:
To find a vector of magnitude 15 that is perpendicular to both vectors \( \mathbf{A} = 4\hat{i} - \hat{j} + 8\hat{k} \) and \( \mathbf{B} = -\hat{j} + \hat{k} \), we can follow these steps: ### Step 1: Define the vectors Let: \[ \mathbf{A} = 4\hat{i} - \hat{j} + 8\hat{k} \] \[ \mathbf{B} = -\hat{j} + \hat{k} \] ### Step 2: Find the cross product \( \mathbf{A} \times \mathbf{B} \) The cross product of two vectors gives a vector that is perpendicular to both. We can calculate \( \mathbf{A} \times \mathbf{B} \) using the determinant of a matrix formed by the unit vectors and the components of \( \mathbf{A} \) and \( \mathbf{B} \): \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -1 & 8 \\ 0 & -1 & 1 \end{vmatrix} \] Calculating this determinant: \[ \mathbf{A} \times \mathbf{B} = \hat{i} \begin{vmatrix} -1 & 8 \\ -1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 4 & 8 \\ 0 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 4 & -1 \\ 0 & -1 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} -1 & 8 \\ -1 & 1 \end{vmatrix} = (-1)(1) - (8)(-1) = -1 + 8 = 7 \) 2. \( \begin{vmatrix} 4 & 8 \\ 0 & 1 \end{vmatrix} = (4)(1) - (8)(0) = 4 \) 3. \( \begin{vmatrix} 4 & -1 \\ 0 & -1 \end{vmatrix} = (4)(-1) - (-1)(0) = -4 \) Putting it all together: \[ \mathbf{A} \times \mathbf{B} = 7\hat{i} - 4\hat{j} - 4\hat{k} \] ### Step 3: Express the required vector \( \mathbf{C} \) Let \( \mathbf{C} = \lambda (\mathbf{A} \times \mathbf{B}) = \lambda (7\hat{i} - 4\hat{j} - 4\hat{k}) \) ### Step 4: Find the magnitude of \( \mathbf{C} \) The magnitude of \( \mathbf{C} \) is given by: \[ |\mathbf{C}| = |\lambda| \sqrt{7^2 + (-4)^2 + (-4)^2} = |\lambda| \sqrt{49 + 16 + 16} = |\lambda| \sqrt{81} = 9|\lambda| \] ### Step 5: Set the magnitude equal to 15 We need: \[ 9|\lambda| = 15 \] Solving for \( |\lambda| \): \[ |\lambda| = \frac{15}{9} = \frac{5}{3} \] ### Step 6: Write the final vector \( \mathbf{C} \) Thus, the vector \( \mathbf{C} \) can be expressed as: \[ \mathbf{C} = \frac{5}{3} (7\hat{i} - 4\hat{j} - 4\hat{k}) = \frac{35}{3}\hat{i} - \frac{20}{3}\hat{j} - \frac{20}{3}\hat{k} \] ### Final Answer The required vector \( \mathbf{C} \) is: \[ \mathbf{C} = \frac{35}{3}\hat{i} - \frac{20}{3}\hat{j} - \frac{20}{3}\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find a vector of magnitude 49, which is perpendicular to both the vectors 2 hat i+3 hat j+6 hat k and 3 hat i-6 hat j+2 hat k . Find a vector whose length is 3 and which is perpendicular to the vector vec a=3 hat i+ hat j-4 hat k and vec b=6 hat i+5 hat j-2 hat k .

Find a vector of magnitude 49, which is perpendicular to both the vectors 2 hat i+3 hat j+6 hat k\ a n d\ 3 hat i-6 hat j+2 hat kdot

Find a vector of magnitude 9, which is perpendicular to both vectors 4 hat i- hat j+3 hat ka n d-2 hat i+ hat j-2 hat k .

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .

Find a unit vector perpendicular to each of the vectors hat(i)+2hat(j)-3hat(k) and hat(i)-2hat(j)+hat(k) .

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Unit vector along the vector hat(i) + hat(j) + hat(k) is

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

Write a vector of magnitude of 18 units in the direction of the vector hat(i) - 2 hat (j) - 2 hat (k) .

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise For Session 2
  1. Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 h...

    Text Solution

    |

  2. Find the values of gamma and mu for which (2hati+6hatj+27hatk)xx(hati+...

    Text Solution

    |

  3. If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j...

    Text Solution

    |

  4. Prove that ( vec a.hat i)( vec axx hat i)+( vec a.j)( vec axx hat j)+(...

    Text Solution

    |

  5. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  6. If ( vec axx vec b)^2+( vec a.vec b)^2=144 and | vec a|=4, then find t...

    Text Solution

    |

  7. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  8. Let the vectors vec a and vec b be such that | vec a|=3 and | vec b|=...

    Text Solution

    |

  9. If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

    Text Solution

    |

  10. Find a unit vector perpendicular to the plane of two vectors a=hat(i)-...

    Text Solution

    |

  11. Find a vector of magnitude 15, which is perpendicular to both the vect...

    Text Solution

    |

  12. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  13. Let A,B and C be unit vectors . Suppuse that A.B=A.c=O and that the an...

    Text Solution

    |

  14. Find the area of the triangle whose adjacent sides are determined by t...

    Text Solution

    |

  15. Find the area of parallelogram whose adjacent sides are represented by...

    Text Solution

    |

  16. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  17. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  18. Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(...

    Text Solution

    |