Home
Class 12
MATHS
Find the area of the triangle whose adja...

Find the area of the triangle whose adjacent sides are determined by the vectors `vec(a)=(-2 hat(i)-5 hat(k)) and vec(b)= ( hat(i)- 2 hat(j) - hat(k))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the triangle whose adjacent sides are determined by the vectors \(\vec{a} = -2\hat{i} - 5\hat{k}\) and \(\vec{b} = \hat{i} - 2\hat{j} - \hat{k}\), we can follow these steps: ### Step 1: Write down the vectors We have: \[ \vec{a} = -2\hat{i} + 0\hat{j} - 5\hat{k} \] \[ \vec{b} = 1\hat{i} - 2\hat{j} - 1\hat{k} \] ### Step 2: Find the cross product \(\vec{a} \times \vec{b}\) The area of the triangle is given by: \[ \text{Area} = \frac{1}{2} |\vec{a} \times \vec{b}| \] To find \(\vec{a} \times \vec{b}\), we can use the determinant of a matrix formed by the unit vectors and the components of \(\vec{a}\) and \(\vec{b}\): \[ \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 0 & -5 \\ 1 & -2 & -1 \end{vmatrix} \] ### Step 3: Calculate the determinant Using the determinant formula: \[ \vec{a} \times \vec{b} = \hat{i} \begin{vmatrix} 0 & -5 \\ -2 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & -5 \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & 0 \\ 1 & -2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 0 & -5 \\ -2 & -1 \end{vmatrix} = (0)(-1) - (-5)(-2) = 0 - 10 = -10\) 2. \(\begin{vmatrix} -2 & -5 \\ 1 & -1 \end{vmatrix} = (-2)(-1) - (-5)(1) = 2 + 5 = 7\) 3. \(\begin{vmatrix} -2 & 0 \\ 1 & -2 \end{vmatrix} = (-2)(-2) - (0)(1) = 4 - 0 = 4\) Now substituting back: \[ \vec{a} \times \vec{b} = -10\hat{i} - 7\hat{j} + 4\hat{k} \] ### Step 4: Find the magnitude of \(\vec{a} \times \vec{b}\) Now, we find the magnitude: \[ |\vec{a} \times \vec{b}| = \sqrt{(-10)^2 + (-7)^2 + (4)^2} = \sqrt{100 + 49 + 16} = \sqrt{165} \] ### Step 5: Calculate the area of the triangle Finally, the area of the triangle is: \[ \text{Area} = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{1}{2} \sqrt{165} \] ### Final Answer The area of the triangle is: \[ \text{Area} = \frac{\sqrt{165}}{2} \text{ square units} \] ---
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the area of the parallelogram whose adjacent sides are determined by the vectors vec a= hat i- hat j+3 hat k and vec b=2 hat i-7 hat j+ hat k .

Find the area of the parallelogram whose diagonals are determined by vectors vec(a)= 3hat(i) + hat(j)-2hat(k) and vec(b)= hat(i) - 3hat(j) + 4hat(k)

Find the area of the parallelogram whose adjacent sides are determined by the vectors vec a= hat i- hat j+3 hat ka n d vec b=2 hat i-7 hat j+ hat kdot

Calculate the area of the parallelogram when adjacent sides are given by the vectors vec(A)=hat(i)+2hat(j)+3hat(k) and vec(B)=2hat(i)-3hat(j)+hat(k) .

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Find the area of a parallelogram whose adjacent sides are given by the vectors vec a=3 hat i+ hat j+4 hat k and vec b= hat i- hat j+ hat k .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the area of a parallelogram whose adjacent sides are represented by the vectors 2 hat i-3 hat k and 4 hat j+2 hat k .

The area ( in sq. units ) of a parallelogram whose adjacent sides are given by the vectors vec( i) + hat(k) and 2 hat(i) + hat(j) + hat(k) is

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise For Session 2
  1. Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 h...

    Text Solution

    |

  2. Find the values of gamma and mu for which (2hati+6hatj+27hatk)xx(hati+...

    Text Solution

    |

  3. If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j...

    Text Solution

    |

  4. Prove that ( vec a.hat i)( vec axx hat i)+( vec a.j)( vec axx hat j)+(...

    Text Solution

    |

  5. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  6. If ( vec axx vec b)^2+( vec a.vec b)^2=144 and | vec a|=4, then find t...

    Text Solution

    |

  7. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  8. Let the vectors vec a and vec b be such that | vec a|=3 and | vec b|=...

    Text Solution

    |

  9. If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

    Text Solution

    |

  10. Find a unit vector perpendicular to the plane of two vectors a=hat(i)-...

    Text Solution

    |

  11. Find a vector of magnitude 15, which is perpendicular to both the vect...

    Text Solution

    |

  12. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  13. Let A,B and C be unit vectors . Suppuse that A.B=A.c=O and that the an...

    Text Solution

    |

  14. Find the area of the triangle whose adjacent sides are determined by t...

    Text Solution

    |

  15. Find the area of parallelogram whose adjacent sides are represented by...

    Text Solution

    |

  16. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  17. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  18. Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(...

    Text Solution

    |