Home
Class 12
MATHS
Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6...

Forces `2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(k)` act at a point P, with position vector `4hat(i)-3hat(j)-hat(k)`. Find the moment of the resultant of these force about the point Q whose position vector is `6hat(i)+hat(j)-3hat(k)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the moment of the resultant of the given forces about point Q. Here’s a step-by-step solution: ### Step 1: Identify the Forces The forces acting at point P are given as: - \( \mathbf{F_1} = 2\hat{i} + \hat{j} \) - \( \mathbf{F_2} = 2\hat{i} - 3\hat{j} + 6\hat{k} \) - \( \mathbf{F_3} = \hat{i} + 2\hat{j} - \hat{k} \) ### Step 2: Calculate the Resultant Force To find the resultant force \( \mathbf{F} \), we add the three forces together: \[ \mathbf{F} = \mathbf{F_1} + \mathbf{F_2} + \mathbf{F_3} \] Calculating each component: - **i-component**: \( 2 + 2 + 1 = 5 \) - **j-component**: \( 1 - 3 + 2 = 0 \) - **k-component**: \( 0 + 6 - 1 = 5 \) Thus, the resultant force is: \[ \mathbf{F} = 5\hat{i} + 0\hat{j} + 5\hat{k} = 5\hat{i} + 5\hat{k} \] ### Step 3: Find the Position Vectors The position vector of point P is given as: \[ \mathbf{P} = 4\hat{i} - 3\hat{j} - \hat{k} \] The position vector of point Q is given as: \[ \mathbf{Q} = 6\hat{i} + \hat{j} - 3\hat{k} \] ### Step 4: Calculate the Vector \( \mathbf{PQ} \) The vector from point Q to point P is given by: \[ \mathbf{PQ} = \mathbf{P} - \mathbf{Q} \] Calculating this: \[ \mathbf{PQ} = (4\hat{i} - 3\hat{j} - \hat{k}) - (6\hat{i} + \hat{j} - 3\hat{k}) = (4 - 6)\hat{i} + (-3 - 1)\hat{j} + (-1 + 3)\hat{k} \] This simplifies to: \[ \mathbf{PQ} = -2\hat{i} - 4\hat{j} + 2\hat{k} \] ### Step 5: Calculate the Moment of the Resultant Force The moment \( \mathbf{M} \) of the resultant force about point Q is given by the cross product: \[ \mathbf{M} = \mathbf{PQ} \times \mathbf{F} \] Substituting the vectors: \[ \mathbf{M} = (-2\hat{i} - 4\hat{j} + 2\hat{k}) \times (5\hat{i} + 0\hat{j} + 5\hat{k}) \] Setting up the determinant: \[ \mathbf{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & -4 & 2 \\ 5 & 0 & 5 \end{vmatrix} \] Calculating the determinant: \[ \mathbf{M} = \hat{i} \begin{vmatrix} -4 & 2 \\ 0 & 5 \end{vmatrix} - \hat{j} \begin{vmatrix} -2 & 2 \\ 5 & 5 \end{vmatrix} + \hat{k} \begin{vmatrix} -2 & -4 \\ 5 & 0 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} -4 & 2 \\ 0 & 5 \end{vmatrix} = (-4)(5) - (0)(2) = -20 \) 2. \( \begin{vmatrix} -2 & 2 \\ 5 & 5 \end{vmatrix} = (-2)(5) - (2)(5) = -10 - 10 = -20 \) 3. \( \begin{vmatrix} -2 & -4 \\ 5 & 0 \end{vmatrix} = (-2)(0) - (-4)(5) = 0 + 20 = 20 \) Putting it all together: \[ \mathbf{M} = -20\hat{i} + 20\hat{j} + 20\hat{k} \] ### Final Answer Thus, the moment of the resultant force about point Q is: \[ \mathbf{M} = -20\hat{i} + 20\hat{j} + 20\hat{k} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 4|10 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise For Session 2
  1. Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 h...

    Text Solution

    |

  2. Find the values of gamma and mu for which (2hati+6hatj+27hatk)xx(hati+...

    Text Solution

    |

  3. If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j...

    Text Solution

    |

  4. Prove that ( vec a.hat i)( vec axx hat i)+( vec a.j)( vec axx hat j)+(...

    Text Solution

    |

  5. If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vec...

    Text Solution

    |

  6. If ( vec axx vec b)^2+( vec a.vec b)^2=144 and | vec a|=4, then find t...

    Text Solution

    |

  7. If | vec a|=2,\ | vec b|=7\ a n d\ vec axx vec b=3 hat i+2 hat j+6 ha...

    Text Solution

    |

  8. Let the vectors vec a and vec b be such that | vec a|=3 and | vec b|=...

    Text Solution

    |

  9. If |veca|=sqrt(26), |vecb|=7 and |vecaxxvecb|=35, find veca.vecb

    Text Solution

    |

  10. Find a unit vector perpendicular to the plane of two vectors a=hat(i)-...

    Text Solution

    |

  11. Find a vector of magnitude 15, which is perpendicular to both the vect...

    Text Solution

    |

  12. Let vec a= hat i+4 hat j+2 hat k ,\ \ vec b=3 hat i-\ 2 hat j+7 hat ...

    Text Solution

    |

  13. Let A,B and C be unit vectors . Suppuse that A.B=A.c=O and that the an...

    Text Solution

    |

  14. Find the area of the triangle whose adjacent sides are determined by t...

    Text Solution

    |

  15. Find the area of parallelogram whose adjacent sides are represented by...

    Text Solution

    |

  16. A force F=2hat(i)+hat(j)-hat(k) acts at point A whose position vector...

    Text Solution

    |

  17. Find the moment of vec F about point (2, -1, 3), where force vec ...

    Text Solution

    |

  18. Forces 2hat(i)+hat(j), 2hat(i)-3hat(j)+6hat(k) and hat(i)+2hat(j)-hat(...

    Text Solution

    |