Home
Class 12
MATHS
Find the vector of length 3 unit whic...

Find the vector of length 3 unit which is perpendicular to ` hat i+ hat j+ hat k` and lies in the plane of ` hat i+ hat j+ hat ka n d2 hat k-3 hat j` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a vector of length 3 units that is perpendicular to the vector \( \hat{i} + \hat{j} + \hat{k} \) and lies in the plane defined by the vectors \( \hat{i} + \hat{j} + \hat{k} \) and \( 2\hat{k} - 3\hat{j} \). ### Step-by-Step Solution: 1. **Assume a General Vector**: Let the vector we are looking for be \( \vec{A} = a\hat{i} + b\hat{j} + c\hat{k} \). 2. **Determine the Plane**: The vector \( \vec{A} \) lies in the plane defined by the vectors \( \vec{B} = \hat{i} + \hat{j} + \hat{k} \) and \( \vec{C} = 2\hat{k} - 3\hat{j} \). We can express \( \vec{A} \) as a linear combination of \( \vec{B} \) and \( \vec{C} \): \[ \vec{A} = m(\hat{i} + \hat{j} + \hat{k}) + n(2\hat{k} - 3\hat{j}) \] 3. **Expand the Expression**: Expanding the right-hand side: \[ \vec{A} = m\hat{i} + m\hat{j} + m\hat{k} + 2n\hat{k} - 3n\hat{j} \] Combining like terms: \[ \vec{A} = m\hat{i} + (m - 3n)\hat{j} + (m + 2n)\hat{k} \] Thus, we can identify: - \( a = m \) - \( b = m - 3n \) - \( c = m + 2n \) 4. **Perpendicular Condition**: The vector \( \vec{A} \) is perpendicular to \( \hat{i} + \hat{j} + \hat{k} \). Therefore, we have: \[ a + b + c = 0 \] Substituting the values of \( a, b, c \): \[ m + (m - 3n) + (m + 2n) = 0 \] Simplifying this gives: \[ 3m - n = 0 \implies n = 3m \] 5. **Substituting for \( n \)**: Substitute \( n = 3m \) back into the expressions for \( b \) and \( c \): - For \( b \): \[ b = m - 3(3m) = m - 9m = -8m \] - For \( c \): \[ c = m + 2(3m) = m + 6m = 7m \] 6. **Expressing \( \vec{A} \)**: Now we have: \[ \vec{A} = m\hat{i} - 8m\hat{j} + 7m\hat{k} \] Factoring out \( m \): \[ \vec{A} = m(\hat{i} - 8\hat{j} + 7\hat{k}) \] 7. **Finding the Magnitude**: The magnitude of \( \vec{A} \) is given by: \[ |\vec{A}| = m \sqrt{1^2 + (-8)^2 + 7^2} = m \sqrt{1 + 64 + 49} = m \sqrt{114} \] 8. **Setting the Magnitude to 3**: We want the length of \( \vec{A} \) to be 3: \[ m \sqrt{114} = 3 \implies m = \frac{3}{\sqrt{114}} = \frac{3\sqrt{114}}{114} = \frac{3}{\sqrt{114}} \] 9. **Final Vector**: Substituting \( m \) back into \( \vec{A} \): \[ \vec{A} = \frac{3}{\sqrt{114}}(\hat{i} - 8\hat{j} + 7\hat{k}) \] ### Conclusion: The required vector of length 3 units that is perpendicular to \( \hat{i} + \hat{j} + \hat{k} \) and lies in the specified plane is: \[ \vec{A} = \frac{3}{\sqrt{114}}(\hat{i} - 8\hat{j} + 7\hat{k}) \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the vector of length 3 unit which is perpendicular to hat i+ hat j+ hat k and lies in the plane of hat i+ hat j+ hat ka n d2 hat i-3 hat j .

Find a vector of magnitude 9, which is perpendicular to both vectors 4 hat i- hat j+3 hat ka n d-2 hat i+ hat j-2 hat k .

Find the components of a unit vector which is perpendicular to the vectors hat i+2 hat j- hat ka n d2 hat i- hat j+2 hat kdot

Find a vector of magnitude 49, which is perpendicular to both the vectors 2 hat i+3 hat j+6 hat k\ a n d\ 3 hat i-6 hat j+2 hat kdot

Write a unit vector perpendicular to hat i+ hat j\ a n d\ hat j+ hat kdot

Find a vector of magnitude 49, which is perpendicular to both the vectors 2 hat i+3 hat j+6 hat k and 3 hat i-6 hat j+2 hat k . Find a vector whose length is 3 and which is perpendicular to the vector vec a=3 hat i+ hat j-4 hat k and vec b=6 hat i+5 hat j-2 hat k .

Find a unit vector perpendicular to both the vectors hat i-2 hat j+3 hat ka n d hat i+2 hat j- hat kdot

Find all vectors of magnitude 10sqrt(3) that are perpendicular to the plane hat i+2 hat j+ hat k\ a n d- hat i+3 hat j+4 hat kdot

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

Vectors perpendicular to hat i- hat j- hat k and in the plane of hat i+ hat j+ hat ka n d- hat i+ hat j+ vec k are hat i+ hat k b. 2 hat i+ hat j+ hat k c. 3 hat i+2 hat j+ hat k d. -4 hat i-2 hat j-2 hat k