Home
Class 12
MATHS
Solve: vecrxxvecb=veca, where veca and v...

Solve: `vecrxxvecb=veca, where veca and vecb` are given vectors such that `veca.vecb=0`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \vec{R} \times \vec{B} = \vec{A} \) where \( \vec{A} \) and \( \vec{B} \) are given vectors such that \( \vec{A} \cdot \vec{B} = 0 \), we can follow these steps: ### Step 1: Understand the Given Information We know that \( \vec{A} \cdot \vec{B} = 0 \), which implies that the vectors \( \vec{A} \) and \( \vec{B} \) are perpendicular to each other. ### Step 2: Start with the Given Equation The equation we need to solve is: \[ \vec{R} \times \vec{B} = \vec{A} \] ### Step 3: Cross Multiply with \( \vec{A} \) To manipulate the equation, we can cross multiply both sides with \( \vec{A} \): \[ \vec{R} \times (\vec{B} \times \vec{A}) = \vec{A} \times \vec{A} \] Since \( \vec{A} \times \vec{A} = \vec{0} \) (the cross product of any vector with itself is zero), we have: \[ \vec{R} \times (\vec{B} \times \vec{A}) = \vec{0} \] ### Step 4: Use the Scalar Triple Product Identity Using the scalar triple product identity, we can expand \( \vec{R} \times (\vec{B} \times \vec{A}) \): \[ \vec{R} \cdot \vec{A} \vec{B} - \vec{B} \cdot \vec{A} \vec{R} = \vec{0} \] Since \( \vec{A} \cdot \vec{B} = 0 \), the second term vanishes: \[ \vec{R} \cdot \vec{A} \vec{B} = \vec{0} \] ### Step 5: Analyze the Result From \( \vec{R} \cdot \vec{A} \vec{B} = \vec{0} \), we can conclude: 1. Since \( \vec{B} \neq \vec{0} \), it follows that \( \vec{R} \cdot \vec{A} = 0 \). This means \( \vec{R} \) is perpendicular to \( \vec{A} \). ### Step 6: Cross Multiply with \( \vec{B} \) Now, we will cross multiply the original equation \( \vec{R} \times \vec{B} = \vec{A} \) with \( \vec{B} \): \[ \vec{R} \times (\vec{B} \times \vec{B}) = \vec{A} \times \vec{B} \] The left side becomes zero since \( \vec{B} \times \vec{B} = \vec{0} \): \[ \vec{0} = \vec{A} \times \vec{B} \] ### Step 7: Expand Using the Scalar Triple Product Using the identity again, we have: \[ \vec{R} \cdot \vec{B} \vec{B} - |\vec{B}|^2 \vec{R} = \vec{A} \times \vec{B} \] Since \( \vec{R} \cdot \vec{B} = 0 \) from earlier, we simplify to: \[ -|\vec{B}|^2 \vec{R} = \vec{A} \times \vec{B} \] ### Step 8: Solve for \( \vec{R} \) Rearranging gives: \[ \vec{R} = -\frac{\vec{A} \times \vec{B}}{|\vec{B}|^2} \] This can also be written as: \[ \vec{R} = \frac{\vec{B} \times \vec{A}}{|\vec{B}|^2} \] ### Final Solution Thus, the solution for \( \vec{R} \) is: \[ \vec{R} = \frac{\vec{B} \times \vec{A}}{|\vec{B}|^2} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 3|10 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Solve for vec x,vecx xx vec b=veca , where veca,vecb are two given vectors such that veca is perpendicular to vecb .

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc and any three vectors such that veca.vecb=0,vecb.vecc=0, then veca and vecc are

A solution of the vector equation vecrxxvecb=vecaxxvecb , where veca, vecb are two given vectors is where lamda is a parameter.

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . where veca and vecb are given vectosrs, are

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

Let vecr, veca, vecb and vecc be four non-zero vectors such that vecr.veca=0, |vecrxxvecb|=|vecr||vecb|,|vecrxxvecc|=|vecr||vecc| then [(veca, vecb, vecc)]=

Let veca.vecb=0 where veca and vecb are unit vectors and the vector vecc is inclined an anlge theta to both veca and vecb. If vecc=mveca+nvecb + p(veca xx vecb) , (m,n,p in R) then

Angle between vectors veca and vecb " where " veca,vecb and vecc are unit vectors satisfying veca + vecb + sqrt3 vecc = vec0 is

If two out to the three vectors , veca, vecb , vecc are unit vectors such that veca + vecb + vecc =0 and 2(veca.vecb + vecb .vecc + vecc.veca) +3=0 then the length of the third vector is