Home
Class 12
MATHS
Given three vectors U=2hat(i)+3hat(j)-6h...

Given three vectors `U=2hat(i)+3hat(j)-6hat(k), V=6hat(i)+2hat(j)+2hat(k) and W=3hat(i)-6hat(j)-2hat(k)` which of the following hold good for the vectors U, V and W ?

A

U, V and W are linearly dependent

B

`(UtimesV)timesW=0`

C

U, V and W form a triplet of mutually perpendicular vectors

D

`Utimes(VtimesW)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the three vectors \( U \), \( V \), and \( W \) given as: \[ U = 2\hat{i} + 3\hat{j} - 6\hat{k} \] \[ V = 6\hat{i} + 2\hat{j} + 2\hat{k} \] \[ W = 3\hat{i} - 6\hat{j} - 2\hat{k} \] We will check the following statements: 1. \( U, V, W \) are linearly independent. 2. \( U \times V \times W = 0 \). 3. \( U, V, W \) are mutually perpendicular. 4. \( U \times V \times W = 0 \). ### Step 1: Check if \( U, V, W \) are linearly independent To check if the vectors are linearly independent, we can calculate the scalar triple product \( U \cdot (V \times W) \). If the result is non-zero, the vectors are linearly independent. **Calculate \( V \times W \)**: \[ V \times W = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 6 & 2 & 2 \\ 3 & -6 & -2 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \left( 2 \cdot (-2) - 2 \cdot (-6) \right) - \hat{j} \left( 6 \cdot (-2) - 2 \cdot 3 \right) + \hat{k} \left( 6 \cdot (-6) - 2 \cdot 3 \right) \] \[ = \hat{i} (-4 + 12) - \hat{j} (-12 - 6) + \hat{k} (-36 - 6) \] \[ = 8\hat{i} + 18\hat{j} - 42\hat{k} \] **Now calculate \( U \cdot (V \times W) \)**: \[ U \cdot (V \times W) = (2\hat{i} + 3\hat{j} - 6\hat{k}) \cdot (8\hat{i} + 18\hat{j} - 42\hat{k}) \] \[ = 2 \cdot 8 + 3 \cdot 18 - 6 \cdot 42 \] \[ = 16 + 54 - 252 \] \[ = 70 - 252 = -182 \] Since \( U \cdot (V \times W) \neq 0 \), the vectors are linearly independent. ### Step 2: Check if \( U \times V \times W = 0 \) We already calculated \( V \times W \). Now we need to calculate \( U \times (V \times W) \). Using the result from \( V \times W \): \[ U \times (V \times W) = U \times (8\hat{i} + 18\hat{j} - 42\hat{k}) \] Calculating the determinant: \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -6 \\ 8 & 18 & -42 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} (3 \cdot (-42) - (-6) \cdot 18) - \hat{j} (2 \cdot (-42) - (-6) \cdot 8) + \hat{k} (2 \cdot 18 - 3 \cdot 8) \] \[ = \hat{i} (-126 + 108) - \hat{j} (-84 + 48) + \hat{k} (36 - 24) \] \[ = -18\hat{i} + 36\hat{j} + 12\hat{k} \] Since \( U \times (V \times W) \neq 0 \), this statement is false. ### Step 3: Check if \( U, V, W \) are mutually perpendicular For the vectors to be mutually perpendicular, the dot products \( U \cdot V \), \( V \cdot W \), and \( U \cdot W \) must all be zero. **Calculate \( U \cdot V \)**: \[ U \cdot V = (2)(6) + (3)(2) + (-6)(2) = 12 + 6 - 12 = 6 \quad (\text{not } 0) \] Since \( U \cdot V \neq 0 \), they are not mutually perpendicular. ### Step 4: Check if \( U \times V \times W = 0 \) This statement is the same as the second statement we checked, and we found that it is false. ### Summary of Results: - **Statement 1**: True (Vectors are linearly independent) - **Statement 2**: False - **Statement 3**: False (Not mutually perpendicular) - **Statement 4**: False ### Final Conclusion: The only statement that holds true is that \( U, V, W \) are linearly independent.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

What is the value of m if the vectors 2hat(i)-hat(j)+hat(k), hat(i)+2hat(j)-3hat(k) and 3hat(i)+m hat(j)+5 hat(k) are coplanar?

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Examine whether the vectors a=2hat(i)+3hat(j)+2hat(k), b=hat(i)-hat(j)+2hat(k) and c=4hat(i)+2hat(j)+4hat(k) form a left handed or a right handed system.

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

The angle between the vectors 4hat(i)+3hat(j)-4hat(k) and 3hat(i)+4hat(j)+6hat(k) is :

Three vectors vec(A) = 2hat(i) - hat(j) + hat(k), vec(B) = hat(i) - 3hat(j) - 5hat(k) , and vec(C ) = 3hat(i) - 4hat(j) - 4hat(k) are sides of an :

Consider three vectors vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k) If these three vectors are coplanar, then value of n will be

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (More Than One Correct Option Type Questions)
  1. Given the following informations about the non-zero vectors A, B and C...

    Text Solution

    |

  2. Let a, b and c are non-zero vectors such that they are not orthogonal ...

    Text Solution

    |

  3. Given three vectors U=2hat(i)+3hat(j)-6hat(k), V=6hat(i)+2hat(j)+2hat(...

    Text Solution

    |

  4. Let vec a=2 hat i- hat j+ hat k , vec b= hat i+2 hat j= hat ka n d ve...

    Text Solution

    |

  5. Three vectors veca,vecb,vecc are such that vecaxxvecb= 3(vecaxxvecc)Al...

    Text Solution

    |

  6. Let a, b and c be non-zero vectors and |a|=1 and r is a non-zero vecto...

    Text Solution

    |

  7. If veca and vecb are two unit vectors perpendicular to each other and...

    Text Solution

    |

  8. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  9. If a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j), then the vectors (a*hat...

    Text Solution

    |

  10. If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and v...

    Text Solution

    |

  11. If veca, vecb, vecc are three non-zero vectors, then which of the foll...

    Text Solution

    |

  12. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  13. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  14. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  15. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  16. If a is perpendicular to b and p is non-zero scalar such that pr+(r*b)...

    Text Solution

    |

  17. In a four-dimensional space where unit vectors along the axes are h...

    Text Solution

    |

  18. A vector(d) is equally inclined to three vectors a=hat(i)-hat(j)+hat(k...

    Text Solution

    |

  19. If a, b, c are non-zero, non-collinear vectors such that a vectors suc...

    Text Solution

    |

  20. Given three vectors veca, vecb and vecc are non-zero and non-coplanar ...

    Text Solution

    |