Home
Class 12
MATHS
If veca and vecb are two unit vectors p...

If `veca and vecb ` are two unit vectors perpendicular to each other and `vecc=lamda_1veca+lamda_2vecb+lamda_3(vecaxxvecb)` then the following is (are) true

A

(a)`lambda_1=a*c`

B

(b)`lambda_2=|atimesb|`

C

(c)`lambda_3=|(atimesb)timesc|`

D

(d)`lambda_1+lambda_2+lambda_3=(a+b+atimesb)*c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will analyze the given information step by step. ### Step 1: Understand the Given Information We have two unit vectors \(\vec{a}\) and \(\vec{b}\) that are perpendicular to each other. This means: - \(|\vec{a}| = 1\) - \(|\vec{b}| = 1\) - \(\vec{a} \cdot \vec{b} = 0\) ### Step 2: Define Vector \(\vec{c}\) The vector \(\vec{c}\) is defined as: \[ \vec{c} = \lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b}) \] ### Step 3: Calculate \(\vec{a} \cdot \vec{c}\) To find \(\lambda_1\), we compute: \[ \vec{a} \cdot \vec{c} = \vec{a} \cdot (\lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})) \] Using the properties of the dot product: \[ \vec{a} \cdot \vec{c} = \lambda_1 (\vec{a} \cdot \vec{a}) + \lambda_2 (\vec{a} \cdot \vec{b}) + \lambda_3 (\vec{a} \cdot (\vec{a} \times \vec{b})) \] Since \(\vec{a} \cdot \vec{a} = 1\), \(\vec{a} \cdot \vec{b} = 0\), and \(\vec{a} \cdot (\vec{a} \times \vec{b}) = 0\): \[ \vec{a} \cdot \vec{c} = \lambda_1 \cdot 1 + \lambda_2 \cdot 0 + \lambda_3 \cdot 0 = \lambda_1 \] Thus, we have: \[ \lambda_1 = \vec{a} \cdot \vec{c} \] ### Step 4: Calculate \(\vec{b} \cdot \vec{c}\) Next, we calculate \(\lambda_2\): \[ \vec{b} \cdot \vec{c} = \vec{b} \cdot (\lambda_1 \vec{a} + \lambda_2 \vec{b} + \lambda_3 (\vec{a} \times \vec{b})) \] Using the properties of the dot product: \[ \vec{b} \cdot \vec{c} = \lambda_1 (\vec{b} \cdot \vec{a}) + \lambda_2 (\vec{b} \cdot \vec{b}) + \lambda_3 (\vec{b} \cdot (\vec{a} \times \vec{b})) \] Since \(\vec{b} \cdot \vec{a} = 0\), \(\vec{b} \cdot \vec{b} = 1\), and \(\vec{b} \cdot (\vec{a} \times \vec{b}) = 0\): \[ \vec{b} \cdot \vec{c} = \lambda_1 \cdot 0 + \lambda_2 \cdot 1 + \lambda_3 \cdot 0 = \lambda_2 \] Thus, we have: \[ \lambda_2 = \vec{b} \cdot \vec{c} \] ### Step 5: Calculate \(\vec{a} \times \vec{b}\) Now, we calculate \(\lambda_3\): \[ \lambda_3 = \frac{|\vec{a} \times \vec{b}|}{|\vec{a}||\vec{b}|} = |\vec{a} \times \vec{b}| \] Since \(\vec{a}\) and \(\vec{b}\) are unit vectors and perpendicular, we have: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(90^\circ) = 1 \cdot 1 \cdot 1 = 1 \] Thus: \[ \lambda_3 = 1 \] ### Step 6: Summarize the Results We have: - \(\lambda_1 = \vec{a} \cdot \vec{c}\) - \(\lambda_2 = \vec{b} \cdot \vec{c}\) - \(\lambda_3 = 1\) ### Conclusion Now we can check the options provided in the question to see which statements are true based on our calculations.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If veca and vecb are two unit vectors perpenicualar to each other and vecc= lambda_(1)veca+ lambda_2 vecb+ lambda_(3)(vecaxx vecb), then which of the following is (are) true ?

If veca,vecb are vectors perpendicular to each other and |veca|=2, |vecb|=3, vecc xx veca=vecb , then the least value of 2|vecc-veca| is

If veca, vecb, vecc be three units vectors perpendicular to each other, then |(2veca+3vecb+4vecc).(veca xx vecb+5vecbxxvecc+6vecc xx veca)| is equal to

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4vecb are perpendicular to each other, then the angle between veca and vecb is

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are non coplanar vectors and lamda is a real number, then [(lamda(veca+vecb), lamda^(2)vecb, lamdavecc)]=[(veca, vecb+vecc,vecb)] for

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

If veca and vecb are two vectors , then prove that (vecaxxvecb)^(2)=|{:(veca.veca" ",veca.vecb),(vecb.veca" ",vecb.vecb):}|

Let veca and vecb be unit vectors such that |veca+vecb|=sqrt3 . Then find the value of (2veca+5vecb).(3veca+vecb+vecaxxvecb)

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (More Than One Correct Option Type Questions)
  1. Three vectors veca,vecb,vecc are such that vecaxxvecb= 3(vecaxxvecc)Al...

    Text Solution

    |

  2. Let a, b and c be non-zero vectors and |a|=1 and r is a non-zero vecto...

    Text Solution

    |

  3. If veca and vecb are two unit vectors perpendicular to each other and...

    Text Solution

    |

  4. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  5. If a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j), then the vectors (a*hat...

    Text Solution

    |

  6. If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and v...

    Text Solution

    |

  7. If veca, vecb, vecc are three non-zero vectors, then which of the foll...

    Text Solution

    |

  8. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  9. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  10. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  11. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  12. If a is perpendicular to b and p is non-zero scalar such that pr+(r*b)...

    Text Solution

    |

  13. In a four-dimensional space where unit vectors along the axes are h...

    Text Solution

    |

  14. A vector(d) is equally inclined to three vectors a=hat(i)-hat(j)+hat(k...

    Text Solution

    |

  15. If a, b, c are non-zero, non-collinear vectors such that a vectors suc...

    Text Solution

    |

  16. Given three vectors veca, vecb and vecc are non-zero and non-coplanar ...

    Text Solution

    |

  17. If r=hat(i)+hat(j)+lambda(2hat(i)+hat(j)+4hat(k)) and r*(hat(i)+2hat(j...

    Text Solution

    |

  18. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  19. Let a, b, c be three vectors such that each of them are non-collinear,...

    Text Solution

    |

  20. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |