Home
Class 12
MATHS
If a=hat(i)+hat(j)+hat(k) and b=hat(i)-h...

If `a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j)`, then the vectors `(a*hat(i))hat(i)+(a*hat(j))hat(j)+(a*hat(k))hat(k), (b*hat(i))hat(i)+(b*hat(j))hat(j)+(b*hat(k))hat(k) and hat(i)+hat(j)-2hat(k)`

A

are mutually perpendicular

B

are coplanar

C

form a parallepiped of volume 3 units

D

form a parallelopiped of volume 6 units

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will first define the vectors \( \mathbf{a} \) and \( \mathbf{b} \), then calculate the required vectors, and finally check if they are mutually perpendicular and if they are coplanar. ### Step 1: Define the Vectors Given: \[ \mathbf{a} = \hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{b} = \hat{i} - \hat{j} \] ### Step 2: Calculate the First Vector We need to calculate: \[ \mathbf{A} = (\mathbf{a} \cdot \hat{i}) \hat{i} + (\mathbf{a} \cdot \hat{j}) \hat{j} + (\mathbf{a} \cdot \hat{k}) \hat{k} \] Calculating the dot products: - \( \mathbf{a} \cdot \hat{i} = 1 \) - \( \mathbf{a} \cdot \hat{j} = 1 \) - \( \mathbf{a} \cdot \hat{k} = 1 \) Thus, \[ \mathbf{A} = 1 \cdot \hat{i} + 1 \cdot \hat{j} + 1 \cdot \hat{k} = \hat{i} + \hat{j} + \hat{k} \] ### Step 3: Calculate the Second Vector Now we calculate: \[ \mathbf{B} = (\mathbf{b} \cdot \hat{i}) \hat{i} + (\mathbf{b} \cdot \hat{j}) \hat{j} + (\mathbf{b} \cdot \hat{k}) \hat{k} \] Calculating the dot products: - \( \mathbf{b} \cdot \hat{i} = 1 \) - \( \mathbf{b} \cdot \hat{j} = -1 \) - \( \mathbf{b} \cdot \hat{k} = 0 \) Thus, \[ \mathbf{B} = 1 \cdot \hat{i} - 1 \cdot \hat{j} + 0 \cdot \hat{k} = \hat{i} - \hat{j} \] ### Step 4: Define the Third Vector The third vector is given as: \[ \mathbf{C} = \hat{i} + \hat{j} - 2\hat{k} \] ### Step 5: Check for Mutual Perpendicularity To check if the vectors \( \mathbf{A}, \mathbf{B}, \mathbf{C} \) are mutually perpendicular, we need to compute the dot products. 1. Calculate \( \mathbf{A} \cdot \mathbf{B} \): \[ \mathbf{A} \cdot \mathbf{B} = (\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i} - \hat{j}) = 1 - 1 + 0 = 0 \] 2. Calculate \( \mathbf{B} \cdot \mathbf{C} \): \[ \mathbf{B} \cdot \mathbf{C} = (\hat{i} - \hat{j}) \cdot (\hat{i} + \hat{j} - 2\hat{k}) = 1 - 1 + 0 = 0 \] 3. Calculate \( \mathbf{A} \cdot \mathbf{C} \): \[ \mathbf{A} \cdot \mathbf{C} = (\hat{i} + \hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j} - 2\hat{k}) = 1 + 1 - 2 = 0 \] Since all dot products are zero, \( \mathbf{A}, \mathbf{B}, \mathbf{C} \) are mutually perpendicular. ### Step 6: Check for Coplanarity To check if the vectors are coplanar, we can calculate the scalar triple product: \[ \text{Scalar Triple Product} = \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \] We can use the determinant method: \[ \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & -2 \end{vmatrix} \] Calculating the determinant: \[ = 1 \cdot \begin{vmatrix} -1 & 0 \\ 1 & -2 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 0 \\ 1 & -2 \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} \] Calculating each 2x2 determinant: 1. \( (-1)(-2) - (0)(1) = 2 \) 2. \( (1)(-2) - (0)(1) = -2 \) 3. \( (1)(1) - (-1)(1) = 2 \) Putting it all together: \[ = 1 \cdot 2 - 1 \cdot (-2) + 1 \cdot 2 = 2 + 2 + 2 = 6 \] Since the scalar triple product is non-zero (6), the vectors are not coplanar. ### Conclusion - The vectors \( \mathbf{A}, \mathbf{B}, \mathbf{C} \) are mutually perpendicular. - They are not coplanar.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The value of hat(i).(hat(j) xx hat(k))+ hat(j). (hat(i) xxhat(k)) + hat(k) . (hat(i) xx hat(j))

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

The angle between the lines overset(to)( r)=(4 hat(i) - hat(j) )+ lambda(2 hat(i) + hat(j) - 3hat(k) ) and overset(to) (r )=( hat(i) -hat(j) + 2 hat(k) ) + mu (hat(i) - 3 hat(j) - 2 hat(k) ) is

Find the angle between vec(A) = hat(i) + 2hat(j) - hat(k) and vec(B) = - hat(i) + hat(j) - 2hat(k)

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (More Than One Correct Option Type Questions)
  1. Let a, b and c be non-zero vectors and |a|=1 and r is a non-zero vecto...

    Text Solution

    |

  2. If veca and vecb are two unit vectors perpendicular to each other and...

    Text Solution

    |

  3. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  4. If a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j), then the vectors (a*hat...

    Text Solution

    |

  5. If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and v...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-zero vectors, then which of the foll...

    Text Solution

    |

  7. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  8. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  9. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  10. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  11. If a is perpendicular to b and p is non-zero scalar such that pr+(r*b)...

    Text Solution

    |

  12. In a four-dimensional space where unit vectors along the axes are h...

    Text Solution

    |

  13. A vector(d) is equally inclined to three vectors a=hat(i)-hat(j)+hat(k...

    Text Solution

    |

  14. If a, b, c are non-zero, non-collinear vectors such that a vectors suc...

    Text Solution

    |

  15. Given three vectors veca, vecb and vecc are non-zero and non-coplanar ...

    Text Solution

    |

  16. If r=hat(i)+hat(j)+lambda(2hat(i)+hat(j)+4hat(k)) and r*(hat(i)+2hat(j...

    Text Solution

    |

  17. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  18. Let a, b, c be three vectors such that each of them are non-collinear,...

    Text Solution

    |

  19. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  20. If a=(1)/(7)(2hat(i)+3hat(j)+6hat(k)): b=(1)/(7)(6hat(i)+2hat(j)-3hat...

    Text Solution

    |