Home
Class 12
MATHS
If veca, vecb, vecc are three non-zero v...

If `veca, vecb, vecc` are three non-zero vectors, then which of the following statement(s) is/are true?

A

`atimes(btimesc), btimes(ctimesa), ctimes(atimesb)` form a right handed system

B

`c, (atimesb)times, atimesb` form a right handed system

C

`a*b+b*c+c*alt0, if a+b+c=0`

D

`((atimesb)*(btimesc))/((btimesc)*(atimesc))=-1, if a+b+c=0`

Text Solution

AI Generated Solution

The correct Answer is:
To determine which statements about the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are true, we will analyze each option step by step. ### Step 1: Analyze Option 1 **Statement:** \(\vec{a} \times (\vec{b} \times \vec{c})\) and \(\vec{b} \times (\vec{c} \times \vec{a})\) form a right-handed system. **Solution:** Using the vector triple product identity, we have: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] \[ \vec{b} \times (\vec{c} \times \vec{a}) = (\vec{b} \cdot \vec{a}) \vec{c} - (\vec{b} \cdot \vec{c}) \vec{a} \] Adding these two results does not yield a non-zero vector, indicating that they are coplanar, not forming a right-handed system. **Conclusion:** Option 1 is **false**. ### Step 2: Analyze Option 2 **Statement:** \(\vec{c}\), \(\vec{a} \times \vec{b}\), and \(\vec{a}\) form a right-handed system. **Solution:** To check if these vectors form a right-handed system, we can check the scalar triple product: \[ \vec{c} \cdot (\vec{a} \times \vec{b}) \] If this product is non-zero, the vectors are not coplanar and form a right-handed system. Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are non-zero vectors, this scalar triple product is likely non-zero. **Conclusion:** Option 2 is **true**. ### Step 3: Analyze Option 3 **Statement:** If \(\vec{a} + \vec{b} + \vec{c} = 0\), then \(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} < 0\). **Solution:** From the equation \(\vec{a} + \vec{b} + \vec{c} = 0\), we can square both sides: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 0 \] Expanding, we get: \[ |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) = 0 \] This implies: \[ \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a} = -\frac{1}{2}(|\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2) < 0 \] Thus, the statement is true. **Conclusion:** Option 3 is **true**. ### Step 4: Analyze Option 4 **Statement:** If \(\vec{a} + \vec{b} + \vec{c} = 0\), then \(\frac{\vec{a} \times \vec{b} \cdot \vec{b} \times \vec{c}}{\vec{b} \times \vec{c} \cdot \vec{a} \times \vec{c}} = -1\). **Solution:** Using the properties of cross products, we know: \[ \vec{a} \times \vec{b} = \vec{c} \times \vec{a} \] \[ \vec{b} \times \vec{c} = \vec{c} \times \vec{a} \] Thus, we can simplify the left-hand side: \[ \frac{|\vec{a} \times \vec{b}|^2}{|\vec{b} \times \vec{c}|^2} \] Since \(\vec{a} \times \vec{b}\) and \(\vec{b} \times \vec{c}\) are equal in magnitude, we find that this expression evaluates to \(-1\). **Conclusion:** Option 4 is **true**. ### Final Results: - **Option 1:** False - **Option 2:** True - **Option 3:** True - **Option 4:** True
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Given three vectors veca, vecb and vecc are non-zero and non-coplanar vectors. Then which of the following are coplanar.

If veca,vecb,vecc are three non zero vectors (no two of which are collinear) such that the pairs of vectors (veca+vecb,vecc) and (vecb+vecc,veca) are colliner, then what is the value of veca+vecb+vecc ? (A) veca is parrallel to vecb (B) vecb (C) vecc (D) vec0

veca,vecb and vecc are three non-zero vectors, no two of which are collinear and the vectors veca+vecb is collinear with vecc , vecb+vecc is collinear with veca , then veca+vecb+vecc=

If veca, vecb and vecc are three non-zero vectors, no two of which are collinear, veca +2 vecb is collinear with vecc and vecb + 3 vecc is collinear with veca , then find the value of |veca + 2vecb + 6vecc| .

If veca, vecb and vecc are three non-zero, non-coplanar vectors,then find the linear relation between the following four vectors : veca-2vecb+3vecc, 2veca-3vecb+4vecc, 3veca-4vecb+ 5vecc, 7veca-11vecb+15vecc .

veca, vecb ,vecc are three non zero vectors no two of which are collonear and the vectors veca + vecb be collinear with vecc,vecb+vecc to collinear with veca then veca+vecb+vecc the equal to ? (A) veca (B) vecb (C) vecc (D) None of these

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecb,vecc are non zero and non coplanar vectors show that the following vector are coplanar: 2veca-3vecb+4vecc, -veca+3vecb-5vecc,-veca+2vecb-3vecc

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (More Than One Correct Option Type Questions)
  1. Let a, b and c be non-zero vectors and |a|=1 and r is a non-zero vecto...

    Text Solution

    |

  2. If veca and vecb are two unit vectors perpendicular to each other and...

    Text Solution

    |

  3. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  4. If a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j), then the vectors (a*hat...

    Text Solution

    |

  5. If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and v...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-zero vectors, then which of the foll...

    Text Solution

    |

  7. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  8. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  9. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  10. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  11. If a is perpendicular to b and p is non-zero scalar such that pr+(r*b)...

    Text Solution

    |

  12. In a four-dimensional space where unit vectors along the axes are h...

    Text Solution

    |

  13. A vector(d) is equally inclined to three vectors a=hat(i)-hat(j)+hat(k...

    Text Solution

    |

  14. If a, b, c are non-zero, non-collinear vectors such that a vectors suc...

    Text Solution

    |

  15. Given three vectors veca, vecb and vecc are non-zero and non-coplanar ...

    Text Solution

    |

  16. If r=hat(i)+hat(j)+lambda(2hat(i)+hat(j)+4hat(k)) and r*(hat(i)+2hat(j...

    Text Solution

    |

  17. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  18. Let a, b, c be three vectors such that each of them are non-collinear,...

    Text Solution

    |

  19. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  20. If a=(1)/(7)(2hat(i)+3hat(j)+6hat(k)): b=(1)/(7)(6hat(i)+2hat(j)-3hat...

    Text Solution

    |