Home
Class 12
MATHS
If a=(1)/(7)(2hat(i)+3hat(j)+6hat(k)): ...

If `a=(1)/(7)(2hat(i)+3hat(j)+6hat(k)): b=(1)/(7)(6hat(i)+2hat(j)-3hat(k)): c=c_1hat(i)+c_2hat(j)+c_2hat(k)` and matrix `A=[[(2)/(7), (3)/(7), (6)/(7)], [(6)/(7), (2)/(7), -(3)/(7)], [c_1, c_2, c_3]] and AT^(T)=I`, then c

A

(a)`(3hat(i)+6hat(j)+2hat(k))/(7)`

B

(b)`(3hat(i)-6hat(j)+2hat(k))/(7)`

C

(c)`(-3hat(i)+6hat(j)-2hat(k))/(7)`

D

(d)`-(3hat(i)+6hat(j)+2hat(k))/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( c \) given the vectors \( a \) and \( b \), and the matrix \( A \). The condition \( A A^T = I \) implies that the rows of \( A \) are orthonormal vectors. ### Step 1: Write down the vectors \( a \) and \( b \) Given: \[ a = \frac{1}{7}(2\hat{i} + 3\hat{j} + 6\hat{k}) \] \[ b = \frac{1}{7}(6\hat{i} + 2\hat{j} - 3\hat{k}) \] ### Step 2: Write down the matrix \( A \) The matrix \( A \) is given by: \[ A = \begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \\ c_1 & c_2 & c_3 \end{bmatrix} \] ### Step 3: Calculate \( A A^T \) We need to compute \( A A^T \) and set it equal to the identity matrix \( I \). The transpose of \( A \) is: \[ A^T = \begin{bmatrix} \frac{2}{7} & \frac{6}{7} & c_1 \\ \frac{3}{7} & \frac{2}{7} & c_2 \\ \frac{6}{7} & -\frac{3}{7} & c_3 \end{bmatrix} \] Now, we compute \( A A^T \): \[ A A^T = \begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \\ c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} \frac{2}{7} & \frac{6}{7} & c_1 \\ \frac{3}{7} & \frac{2}{7} & c_2 \\ \frac{6}{7} & -\frac{3}{7} & c_3 \end{bmatrix} \] ### Step 4: Calculate the elements of \( A A^T \) 1. **First row, first column**: \[ \left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{6}{7}\right)^2 = \frac{4}{49} + \frac{9}{49} + \frac{36}{49} = \frac{49}{49} = 1 \] 2. **First row, second column**: \[ \frac{2}{7} \cdot \frac{6}{7} + \frac{3}{7} \cdot \frac{2}{7} + \frac{6}{7} \cdot -\frac{3}{7} = \frac{12}{49} + \frac{6}{49} - \frac{18}{49} = 0 \] 3. **First row, third column**: \[ \frac{2}{7}c_1 + \frac{3}{7}c_2 + \frac{6}{7}c_3 = 0 \] 4. **Second row, first column**: \[ \frac{6}{7} \cdot \frac{2}{7} + \frac{2}{7} \cdot \frac{3}{7} + -\frac{3}{7} \cdot \frac{6}{7} = \frac{12}{49} + \frac{6}{49} - \frac{18}{49} = 0 \] 5. **Second row, second column**: \[ \left(\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2 + \left(-\frac{3}{7}\right)^2 = \frac{36}{49} + \frac{4}{49} + \frac{9}{49} = \frac{49}{49} = 1 \] 6. **Second row, third column**: \[ \frac{6}{7}c_1 + \frac{2}{7}c_2 - \frac{3}{7}c_3 = 0 \] 7. **Third row, first column**: \[ c_1 \cdot \frac{2}{7} + c_2 \cdot \frac{6}{7} + c_3 \cdot c_1 = 0 \] 8. **Third row, second column**: \[ c_1 \cdot \frac{3}{7} + c_2 \cdot \frac{2}{7} + c_3 \cdot c_2 = 0 \] 9. **Third row, third column**: \[ c_1^2 + c_2^2 + c_3^2 = 1 \] ### Step 5: Solve the equations From the equations derived, we have: 1. \( \frac{2}{7}c_1 + \frac{3}{7}c_2 + \frac{6}{7}c_3 = 0 \) 2. \( \frac{6}{7}c_1 + \frac{2}{7}c_2 - \frac{3}{7}c_3 = 0 \) 3. \( c_1^2 + c_2^2 + c_3^2 = 1 \) By solving these equations, we can express \( c_1, c_2, c_3 \) in terms of each other and find their values. ### Step 6: Substitute values and simplify After solving the equations, we find: \[ c = \frac{1}{7}(-3\hat{i} + 6\hat{j} - 2\hat{k}) \] ### Final Answer Thus, the vector \( c \) is: \[ c = \frac{1}{7}(-3\hat{i} + 6\hat{j} - 2\hat{k}) \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|71 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

The angle between two vectors given by 6hat(i)+6hat(j)-3hat(k) and 7hat(i)+4hat(j)+4hat(k) is

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

If a=6hat(i)+7hat(j)+7hat(k), b=3hat(i)+2hat(j)-2hat(k), P(1, 2, 3) Q. The image of the point P in the line r=a+lambdab is

Find the projection of the vector 7hat(i)+hat(j)-4hat(k)" on " 2hat(i)+6hat(j)+3hat(k) . a) 8/7 b) 7/8 c) 6/7 d) 4/7

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

The position vectors of points A, B, C and D are : vec(A) = 3hat(i) + 4hat(j) + 5hat(k), vec(B) = 4hat(i) + 5hat(j) + 6hat(k) vec(C ) = 7hat(i) + 9hat(j) + 3hat(k) and vec(D) = 4hat(i) + 6hat(j) Then the displacement vectors vec(AB) and vec(CD) are :

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (More Than One Correct Option Type Questions)
  1. Let a, b and c be non-zero vectors and |a|=1 and r is a non-zero vecto...

    Text Solution

    |

  2. If veca and vecb are two unit vectors perpendicular to each other and...

    Text Solution

    |

  3. Given three non-coplanar vectors OA=a, OB=b, OC=c. Let S be the centre...

    Text Solution

    |

  4. If a=hat(i)+hat(j)+hat(k) and b=hat(i)-hat(j), then the vectors (a*hat...

    Text Solution

    |

  5. If vec a=x hat i+y hat j+z hat k , vec b=y hat i+z hat j+x hat k and v...

    Text Solution

    |

  6. If veca, vecb, vecc are three non-zero vectors, then which of the foll...

    Text Solution

    |

  7. Unit vectors veca and vecb ar perpendicular , and unit vector vecc is ...

    Text Solution

    |

  8. If a, b, c are three non-zero vectors, then which of the following sta...

    Text Solution

    |

  9. Let veca and vecb be two non- zero perpendicular vectors. A vector vec...

    Text Solution

    |

  10. If veca and vecb are any two unit vectors, then find the greatest post...

    Text Solution

    |

  11. If a is perpendicular to b and p is non-zero scalar such that pr+(r*b)...

    Text Solution

    |

  12. In a four-dimensional space where unit vectors along the axes are h...

    Text Solution

    |

  13. A vector(d) is equally inclined to three vectors a=hat(i)-hat(j)+hat(k...

    Text Solution

    |

  14. If a, b, c are non-zero, non-collinear vectors such that a vectors suc...

    Text Solution

    |

  15. Given three vectors veca, vecb and vecc are non-zero and non-coplanar ...

    Text Solution

    |

  16. If r=hat(i)+hat(j)+lambda(2hat(i)+hat(j)+4hat(k)) and r*(hat(i)+2hat(j...

    Text Solution

    |

  17. If vectors veca and vecb are two adjecent sides of a paralleogram, the...

    Text Solution

    |

  18. Let a, b, c be three vectors such that each of them are non-collinear,...

    Text Solution

    |

  19. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  20. If a=(1)/(7)(2hat(i)+3hat(j)+6hat(k)): b=(1)/(7)(6hat(i)+2hat(j)-3hat...

    Text Solution

    |