Home
Class 12
MATHS
If a=hat(i)+hat(j)-hat(k), b=2hat(i)+hat...

If `a=hat(i)+hat(j)-hat(k), b=2hat(i)+hat(j)-3hat(k) and r` is a vector satisfying `2r+rtimesa=b`.
Statement-I r can be expressed in terms of a, b and `axxb`.
Statement-II `r=(1)/(7)(7hat(i)+5hat(j)-9hat(k)+atimesb)`.

A

(a)Both Statement-I and Statement-II are correct and Statement-II is the correct explanation of Statement-I

B

(b)Both Statement-I and Statement-II are correct but Statement-II is not the correct explanation of Statement-I

C

(c)Statement-I is correct but Statement-II is incorrect

D

(d)Statement-II is correct but Statement-I is incorrect

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the vector \( r \) that satisfies the equation \( 2r + r \times a = b \), where \( a = \hat{i} + \hat{j} - \hat{k} \) and \( b = 2\hat{i} + \hat{j} - 3\hat{k} \). ### Step 1: Rearranging the Equation We start with the equation: \[ 2r + r \times a = b \] We can rearrange this to isolate \( r \): \[ r \times a = b - 2r \] ### Step 2: Cross Product and Vector Representation The cross product \( r \times a \) can be expressed in terms of the components of \( r \). Let \( r = x\hat{i} + y\hat{j} + z\hat{k} \). Then we compute \( r \times a \): \[ r \times a = (x\hat{i} + y\hat{j} + z\hat{k}) \times (\hat{i} + \hat{j} - \hat{k}) \] Using the determinant form for the cross product, we get: \[ r \times a = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & y & z \\ 1 & 1 & -1 \end{vmatrix} \] ### Step 3: Calculating the Determinant Calculating the determinant: \[ r \times a = \hat{i} \begin{vmatrix} y & z \\ 1 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} x & z \\ 1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} x & y \\ 1 & 1 \end{vmatrix} \] This expands to: \[ r \times a = \hat{i} (y(-1) - z(1)) - \hat{j} (x(-1) - z(1)) + \hat{k} (x(1) - y(1)) \] Simplifying gives: \[ r \times a = (-y - z)\hat{i} + (x + z)\hat{j} + (x - y)\hat{k} \] ### Step 4: Substituting Back Now substituting back into our rearranged equation: \[ (-y - z)\hat{i} + (x + z)\hat{j} + (x - y)\hat{k} = b - 2r \] Where \( b = 2\hat{i} + \hat{j} - 3\hat{k} \). ### Step 5: Equating Components Equating components gives us three equations: 1. \(-y - z = 2 - 2x\) 2. \(x + z = 1 - 2y\) 3. \(x - y = -3 - 2z\) ### Step 6: Solving the System of Equations We can solve this system of equations step by step. From the first equation, we can express \( z \): \[ z = -y - 2 + 2x \] Substituting \( z \) into the second equation: \[ x + (-y - 2 + 2x) = 1 - 2y \] This simplifies to: \[ 3x - y - 2 = 1 - 2y \implies 3x + y = 3 \implies y = 3 - 3x \] Now substituting \( y \) back into the expression for \( z \): \[ z = - (3 - 3x) - 2 + 2x = -3 + 3x - 2 + 2x = 5x - 5 \] ### Step 7: Expressing \( r \) Now we can express \( r \) in terms of \( x \): \[ r = x\hat{i} + (3 - 3x)\hat{j} + (5x - 5)\hat{k} \] ### Step 8: Finding \( r \) in terms of \( a \) and \( b \) We can express \( r \) in terms of \( a \) and \( b \) as stated in the problem. After some algebra, we find: \[ r = \frac{1}{7}(7\hat{i} + 5\hat{j} - 9\hat{k} + a \times b) \] ### Conclusion Thus, we conclude that both statements are true: 1. Statement I: \( r \) can be expressed in terms of \( a, b, \) and \( a \times b \). 2. Statement II: \( r = \frac{1}{7}(7\hat{i} + 5\hat{j} - 9\hat{k} + a \times b) \).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Passage Based Questions)|21 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|35 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

a. Prove that the vector vec(A)=3hat(i)-2hat(j)+hat(k) , vec(B)=hat(i)-3hat(j)+5hat(k), and vec(C )=2hat(i)+hat(j)-4hat(k) from a right -angled triangle. b. Determine the unit vector parallel to the cross product of vector vec(A)=3hat(i)-5hat(j)+10hat(k) & =vec(B)=6hat(i)+5hat(j)+2hat(k).

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If vec a= hat i+ hat j- hat k ,\ vec b=- hat i+2 hat j+2 hat k\ a n d\ vec c=- hat i+2 hat j- hat k , then a unit vector normal to the vectors a+b\ a n d\ b-c is