Home
Class 12
MATHS
Consider three vectors p=hat(i)+hat(j)+h...

Consider three vectors `p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k)` and let s be a unit vector, then
Q. If `(ptimesq)timesr=up+vq+wr`, then (u+v+w) is equal to

A

`8`

B

`2`

C

`-2`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \((\mathbf{p} \times \mathbf{q}) \times \mathbf{r}\) and express it in the form \(u\mathbf{p} + v\mathbf{q} + w\mathbf{r}\). We will then find \(u + v + w\). ### Step 1: Define the vectors Given: \[ \mathbf{p} = \hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{q} = 2\hat{i} + 4\hat{j} - \hat{k} \] \[ \mathbf{r} = \hat{i} + \hat{j} + 3\hat{k} \] ### Step 2: Compute \(\mathbf{p} \times \mathbf{q}\) Using the determinant method to find the cross product: \[ \mathbf{p} \times \mathbf{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 4 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 4 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} \] \[ = \hat{i} (1 \cdot -1 - 1 \cdot 4) - \hat{j} (1 \cdot -1 - 1 \cdot 2) + \hat{k} (1 \cdot 4 - 1 \cdot 2) \] \[ = \hat{i} (-1 - 4) - \hat{j} (-1 - 2) + \hat{k} (4 - 2) \] \[ = -5\hat{i} + 3\hat{j} + 2\hat{k} \] Thus, \[ \mathbf{p} \times \mathbf{q} = -5\hat{i} + 3\hat{j} + 2\hat{k} \] ### Step 3: Compute \((\mathbf{p} \times \mathbf{q}) \times \mathbf{r}\) Now we need to compute: \[ (\mathbf{p} \times \mathbf{q}) \times \mathbf{r} = (-5\hat{i} + 3\hat{j} + 2\hat{k}) \times (\hat{i} + \hat{j} + 3\hat{k}) \] Using the determinant method again: \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -5 & 3 & 2 \\ 1 & 1 & 3 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 3 & 2 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} -5 & 2 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} -5 & 3 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i} (3 \cdot 3 - 2 \cdot 1) - \hat{j} (-5 \cdot 3 - 2 \cdot 1) + \hat{k} (-5 \cdot 1 - 3 \cdot 1) \] \[ = \hat{i} (9 - 2) - \hat{j} (-15 - 2) + \hat{k} (-5 - 3) \] \[ = 7\hat{i} + 17\hat{j} - 8\hat{k} \] ### Step 4: Express in terms of \(\mathbf{p}, \mathbf{q}, \mathbf{r}\) We want to express \(7\hat{i} + 17\hat{j} - 8\hat{k}\) in terms of \(\mathbf{p}, \mathbf{q}, \mathbf{r}\): \[ \mathbf{p} = \hat{i} + \hat{j} + \hat{k} \] \[ \mathbf{q} = 2\hat{i} + 4\hat{j} - \hat{k} \] \[ \mathbf{r} = \hat{i} + \hat{j} + 3\hat{k} \] We need to find \(u\), \(v\), and \(w\) such that: \[ 7\hat{i} + 17\hat{j} - 8\hat{k} = u(\hat{i} + \hat{j} + \hat{k}) + v(2\hat{i} + 4\hat{j} - \hat{k}) + w(\hat{i} + \hat{j} + 3\hat{k}) \] ### Step 5: Set up the equations This gives us a system of equations: 1. \(u + 2v + w = 7\) (coefficient of \(\hat{i}\)) 2. \(u + 4v + w = 17\) (coefficient of \(\hat{j}\)) 3. \(u - v + 3w = -8\) (coefficient of \(\hat{k}\)) ### Step 6: Solve the equations From equations 1 and 2, we can eliminate \(w\): Subtract equation 1 from equation 2: \[ (4v + w) - (2v + w) = 17 - 7 \] \[ 2v = 10 \implies v = 5 \] Substituting \(v = 5\) into equation 1: \[ u + 2(5) + w = 7 \implies u + 10 + w = 7 \implies u + w = -3 \quad \text{(Equation 4)} \] Now substitute \(v = 5\) into equation 3: \[ u - 5 + 3w = -8 \implies u + 3w = -3 \quad \text{(Equation 5)} \] ### Step 7: Solve Equations 4 and 5 From Equation 4: \[ u + w = -3 \implies u = -3 - w \] Substituting into Equation 5: \[ (-3 - w) + 3w = -3 \] \[ -3 + 2w = -3 \implies 2w = 0 \implies w = 0 \] Substituting \(w = 0\) back into Equation 4: \[ u + 0 = -3 \implies u = -3 \] And we already have \(v = 5\). ### Step 8: Find \(u + v + w\) Now we have: \[ u = -3, \quad v = 5, \quad w = 0 \] Thus, \[ u + v + w = -3 + 5 + 0 = 2 \] ### Final Answer The value of \(u + v + w\) is \(2\).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|15 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. The magnitude of the vector (p*s)(qtimesr)+(q*s)(r xx p)+(r*s)(ptimesq) is

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

Unit vector along the vector hat(i) + hat(j) + hat(k) is

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Passage Based Questions)
  1. Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and v...

    Text Solution

    |

  2. Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k...

    Text Solution

    |

  3. Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k...

    Text Solution

    |

  4. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  5. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  6. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  7. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  8. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  9. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  10. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  11. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  12. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  13. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  14. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |

  15. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |

  16. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |

  17. Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make...

    Text Solution

    |

  18. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |

  19. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  20. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |