Home
Class 12
MATHS
Consider three vectors p=hat(i)+hat(j)+h...

Consider three vectors `p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k)` and let s be a unit vector, then Q. The magnitude of the vector `(p*s)(qtimesr)+(q*s)(r xx p)+(r*s)(ptimesq)` is

A

A. `4`

B

B. `8`

C

C. `18`

D

D. `2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the magnitude of the vector \( (p \cdot s)(q \times r) + (q \cdot s)(r \times p) + (r \cdot s)(p \times q) \) where \( p, q, r \) are given vectors and \( s \) is a unit vector. ### Step 1: Define the vectors Given: - \( p = \hat{i} + \hat{j} + \hat{k} \) - \( q = 2\hat{i} + 4\hat{j} - \hat{k} \) - \( r = \hat{i} + \hat{j} + 3\hat{k} \) ### Step 2: Calculate the cross products 1. **Calculate \( q \times r \)**: \[ q \times r = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 4 & -1 \\ 1 & 1 & 3 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} 4 & -1 \\ 1 & 3 \end{vmatrix} - \hat{j} \begin{vmatrix} 2 & -1 \\ 1 & 3 \end{vmatrix} + \hat{k} \begin{vmatrix} 2 & 4 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i} (4 \cdot 3 - (-1) \cdot 1) - \hat{j} (2 \cdot 3 - (-1) \cdot 1) + \hat{k} (2 \cdot 1 - 4 \cdot 1) \] \[ = \hat{i} (12 + 1) - \hat{j} (6 + 1) + \hat{k} (2 - 4) \] \[ = 13\hat{i} - 7\hat{j} - 2\hat{k} \] 2. **Calculate \( r \times p \)**: \[ r \times p = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 3 \\ 1 & 1 & 1 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} \] \[ = \hat{i} (1 \cdot 1 - 3 \cdot 1) - \hat{j} (1 \cdot 1 - 3 \cdot 1) + \hat{k} (1 \cdot 1 - 1 \cdot 1) \] \[ = \hat{i} (1 - 3) - \hat{j} (1 - 3) + 0\hat{k} \] \[ = -2\hat{i} + 2\hat{j} \] 3. **Calculate \( p \times q \)**: \[ p \times q = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & 4 & -1 \end{vmatrix} \] Expanding this determinant: \[ = \hat{i} \begin{vmatrix} 1 & 1 \\ 4 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix} \] \[ = \hat{i} (1 \cdot (-1) - 1 \cdot 4) - \hat{j} (1 \cdot (-1) - 1 \cdot 2) + \hat{k} (1 \cdot 4 - 1 \cdot 2) \] \[ = \hat{i} (-1 - 4) - \hat{j} (-1 - 2) + \hat{k} (4 - 2) \] \[ = -5\hat{i} + 3\hat{j} + 2\hat{k} \] ### Step 3: Calculate the triple product \( p \cdot (q \times r) \) Using the result from \( q \times r \): \[ p \cdot (q \times r) = \hat{i} \cdot (13\hat{i} - 7\hat{j} - 2\hat{k}) + \hat{j} \cdot (13\hat{i} - 7\hat{j} - 2\hat{k}) + \hat{k} \cdot (13\hat{i} - 7\hat{j} - 2\hat{k}) \] \[ = 1 \cdot 13 + 1 \cdot (-7) + 1 \cdot (-2) = 13 - 7 - 2 = 4 \] ### Step 4: Calculate the triple product \( q \cdot (r \times p) \) Using the result from \( r \times p \): \[ q \cdot (r \times p) = (2\hat{i} + 4\hat{j} - \hat{k}) \cdot (-2\hat{i} + 2\hat{j}) = 2 \cdot (-2) + 4 \cdot 2 + (-1) \cdot 0 \] \[ = -4 + 8 = 4 \] ### Step 5: Calculate the triple product \( r \cdot (p \times q) \) Using the result from \( p \times q \): \[ r \cdot (p \times q) = (\hat{i} + \hat{j} + 3\hat{k}) \cdot (-5\hat{i} + 3\hat{j} + 2\hat{k}) = 1 \cdot (-5) + 1 \cdot 3 + 3 \cdot 2 \] \[ = -5 + 3 + 6 = 4 \] ### Step 6: Combine the results Now we can combine the results: \[ (p \cdot s)(q \times r) + (q \cdot s)(r \times p) + (r \cdot s)(p \times q) = 4 + 4 + 4 = 12 \] ### Step 7: Find the magnitude Since \( s \) is a unit vector, the magnitude of the vector is simply the sum of the coefficients: \[ \text{Magnitude} = |12| = 12 \] ### Final Answer The magnitude of the vector is \( 12 \).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|15 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. If (ptimesq)timesr=up+vq+wr , then (u+v+w) is equal to

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

If vec(A)=2hat(i)+hat(j)+hat(k) and vec(B)=hat(i)+hat(j)+hat(k) are two vectors, then the unit vector is

Unit vector along the vector hat(i) + hat(j) + hat(k) is

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Passage Based Questions)
  1. Consider three vectors vecp=hati+hatj+hatk,vecq=2hati+4hatj-hatk and v...

    Text Solution

    |

  2. Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k...

    Text Solution

    |

  3. Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k...

    Text Solution

    |

  4. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  5. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  6. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  7. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  8. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  9. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  10. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  11. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  12. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  13. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  14. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |

  15. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |

  16. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |

  17. Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make...

    Text Solution

    |

  18. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |

  19. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  20. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |