Home
Class 12
MATHS
Consider the three vectors p, q, r such ...

Consider the three vectors p, q, r such that `p=hat(i)+hat(j)+hat(k) and q=hat(i)-hat(j)+hat(k) , ptimesr=q+cp and p*r=2`
Q.The value of [p q r] is

A

`(5sqrt(2)c)/(|r|)`

B

`-(8)/(3)`

C

`0`

D

greater than 0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the scalar triple product \([p, q, r]\) given the vectors \(p\), \(q\), and \(r\) along with some conditions. Let's break down the solution step by step. ### Given: - \( p = \hat{i} + \hat{j} + \hat{k} \) - \( q = \hat{i} - \hat{j} + \hat{k} \) - \( p \times r = q + cp \) - \( p \cdot r = 2 \) ### Step 1: Define the vector \(r\) Let \( r = x\hat{i} + y\hat{j} + z\hat{k} \). ### Step 2: Calculate \( p \times r \) Using the determinant method for the cross product: \[ p \times r = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} \] Calculating the determinant: \[ p \times r = \hat{i}(1 \cdot z - 1 \cdot y) - \hat{j}(1 \cdot z - 1 \cdot x) + \hat{k}(1 \cdot y - 1 \cdot x) \] This simplifies to: \[ p \times r = (z - y)\hat{i} - (z - x)\hat{j} + (y - x)\hat{k} \] ### Step 3: Set up the equation from \( p \times r = q + cp \) We know: \[ q + cp = (\hat{i} - \hat{j} + \hat{k}) + c(\hat{i} + \hat{j} + \hat{k}) = (1+c)\hat{i} + (-1+c)\hat{j} + (1+c)\hat{k} \] Setting the two expressions equal gives us: \[ (z - y)\hat{i} - (z - x)\hat{j} + (y - x)\hat{k} = (1+c)\hat{i} + (-1+c)\hat{j} + (1+c)\hat{k} \] ### Step 4: Equate coefficients From the above equation, we can equate coefficients: 1. \( z - y = 1 + c \) (Equation 1) 2. \( -(z - x) = -1 + c \) (Equation 2) → \( z - x = 1 - c \) (Equation 2) 3. \( y - x = 1 + c \) (Equation 3) ### Step 5: Solve the system of equations From Equations 1 and 2: From Equation 1: \( z = y + 1 + c \) Substituting \(z\) in Equation 2: \[ y + 1 + c - x = 1 - c \implies y - x + 2c = 0 \implies x = y + 2c \quad (Equation 4) \] Now substituting \(x\) in Equation 3: \[ y - (y + 2c) = 1 + c \implies -2c = 1 + c \implies -3c = 1 \implies c = -\frac{1}{3} \] ### Step 6: Substitute \(c\) back to find \(x\), \(y\), and \(z\) Using \(c = -\frac{1}{3}\): From Equation 4: \[ x = y - \frac{2}{3} \] Substituting \(c\) into Equation 1: \[ z = y + 1 - \frac{1}{3} = y + \frac{2}{3} \] ### Step 7: Use the dot product condition Using \(p \cdot r = 2\): \[ 1 + y + z = 2 \implies 1 + y + (y + \frac{2}{3}) = 2 \implies 2y + \frac{5}{3} = 2 \implies 2y = \frac{1}{3} \implies y = \frac{1}{6} \] Now substituting \(y\) back to find \(x\) and \(z\): \[ x = \frac{1}{6} - \frac{2}{3} = \frac{1}{6} - \frac{4}{6} = -\frac{1}{2} \] \[ z = \frac{1}{6} + \frac{2}{3} = \frac{1}{6} + \frac{4}{6} = \frac{5}{6} \] ### Step 8: Construct vector \(r\) Thus, we have: \[ r = -\frac{1}{2}\hat{i} + \frac{1}{6}\hat{j} + \frac{5}{6}\hat{k} \] ### Step 9: Calculate the scalar triple product \([p, q, r]\) Using the determinant method: \[ [p, q, r] = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -\frac{1}{2} & \frac{1}{6} & \frac{5}{6} \end{vmatrix} \] Calculating the determinant: \[ = 1 \left( -1 \cdot \frac{5}{6} - 1 \cdot \frac{1}{6} \right) - 1 \left( 1 \cdot \frac{5}{6} - 1 \cdot -\frac{1}{2} \right) + 1 \left( 1 \cdot \frac{1}{6} - (-1) \cdot -\frac{1}{2} \right) \] Calculating each term: 1. First term: \( -1 \cdot \frac{6}{6} = -1 \) 2. Second term: \( 1 \cdot \left( \frac{5}{6} + \frac{3}{6} \right) = 1 \cdot \frac{8}{6} = \frac{4}{3} \) 3. Third term: \( 1 \cdot \left( \frac{1}{6} - \frac{1}{2} \right) = 1 \cdot \left( \frac{1}{6} - \frac{3}{6} \right) = 1 \cdot -\frac{2}{6} = -\frac{1}{3} \) Putting it all together: \[ = -1 - \frac{4}{3} - \frac{1}{3} = -1 - \frac{5}{3} = -\frac{8}{3} \] ### Final Answer: Thus, the value of the scalar triple product \([p, q, r]\) is: \[ \boxed{-\frac{8}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|15 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|12 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If vector hat(i) - 3hat(j) + 5hat(k) and hat(i) - 3 hat(j) - a hat(k) are equal vectors, then the value of a is :

Two vector vec(P) = 2hat(i) + bhat(j) + 2hat(k) and vec(Q) = hat(i) + hat(j) + hat(k) are perpendicular. The value of b will be :

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. The magnitude of the vector (p*s)(qtimesr)+(q*s)(r xx p)+(r*s)(ptimesq) is

Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k) and r=hat(i)+hat(j)+3hat(k) and let s be a unit vector, then Q. If (ptimesq)timesr=up+vq+wr , then (u+v+w) is equal to

If (2hat(i)+6hat(j)+ 27hat(k))xx(hat(i)+phat(j)+qhat(k))=vec(0) , then the values of p and q are ?

The sides of a parallelogram represented by vectors p = 5hat(i) - 4hat(j) + 3hat(k) and q = 3hat(i) + 2hat(j) - hat(k) . Then the area of the parallelogram is :

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

Consider three vectors vec(A)=2 hat(i)+3 hat(j)-2 hat(k)" " vec(B)=5hat(i)+nhat(j)+hat(k)" " vec(C)=-hat(i)+2hat(j)+3 hat(k) If these three vectors are coplanar, then value of n will be

A, B and C are three vectors given by 2hat(i)+hat(k), hat(i)+hat(j)+hat(k) and 4hat(i)-3hat(j)+7hat(k) . Then, find R, which satisfies the relation RtimesB=CtimesB and R*A=0 .

Find the value of p , if (2 hat i+6 hat j+27 hat k) x ( hat i+3 hat j+p hat k)= vec0

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Passage Based Questions)
  1. Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k...

    Text Solution

    |

  2. Consider three vectors p=hat(i)+hat(j)+hat(k), q=2hat(i)+4hat(j)-hat(k...

    Text Solution

    |

  3. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  4. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  5. Consider the three vectors p, q, r such that p=hat(i)+hat(j)+hat(k) an...

    Text Solution

    |

  6. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  7. Let P and Q are two points on the curve y=log((1)/(2))(x-0.5)+log2sqrt...

    Text Solution

    |

  8. Let P, Q are two points on the curve y = log(1/2) (x-0.5)+log2 sqrt(4x...

    Text Solution

    |

  9. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  10. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  11. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  12. If a, b, c are three given non-coplanar vectors and any arbitratry vec...

    Text Solution

    |

  13. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |

  14. Let g(x)=int0^x(3t^(2)+2t+9)dt and f(x) be a decreasing function fora...

    Text Solution

    |

  15. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |

  16. Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make...

    Text Solution

    |

  17. Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z m...

    Text Solution

    |

  18. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  19. Let a, b, c are non-zero unit vectors inclined pairwise with the same ...

    Text Solution

    |

  20. a, b, c are non-zero unit vectors inclined pairwise with the same angl...

    Text Solution

    |