Home
Class 12
MATHS
If hat(a), hat(b) and hat(c) are the thr...

If `hat(a), hat(b) and hat(c)` are the three unit vector and `alpha, beta and gamma` are scalars such that `hat(c)=alphahat(a)+betahat(b)+gamma(hat(a)xxhat(b)).` If is given that `hat(a)*hat(b)=o and hatc` makes equal angle with both `hat(a)and hat(b)`, then evaluate `alpha^(2)+beta^(2)+gamma^(2)`.

Text Solution

Verified by Experts

The correct Answer is:
`(1)`
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If hat(a) and hat(b) are unit vectors and theta is the angle between them, prove that "tan"(theta)/(2)= (|hat(a)-hat(b)|)/(|hat(a)+ hat(b)|)

If hat a , hat b ,a n d hat c are unit vectors, then | hat a+hat b|^2+| hat b- hat c|^2+| hat c- hat a|^2 does not exceed

If the vectors hat(i)+hat(j)+hat(k) makes angle alpha, beta and gamma with vectors hat(i), hat(j) and hat(k) respectively, then

If hat a and hat b are unit vectors inclined at an angle theta , then prove that costheta/2=1/2| hat a+ hat b| tantheta/2=1/2|( hat a- hat b)/( hat a+ hat b)|

If hat a\ a n d\ hat b are unit vectors inclined at an angle theta then prove that tantheta/2=(| hat a- hat b|)/(| hat a+ hat b|)

If hat aa n d hat b are unit vectors inclined at an angle theta , then prove that sintheta/2=1/2| hat a- hat b|dot

Let alpha, beta, gamma be distinct real numbers. The points with position vectors alpha hati + beta hatj +gamma hat k , beta hati + gamma hatj +alpha hat k , gamma hati +alpha hatj + beta hatk

Find the value of alphatimes(betatimesgamma) , where alpha=2hat(i)-10hat(j)+2hat(k), beta=3hat(i)+hat(j)+2hat(k), gamma=2hat(i)+hat(j)+3hat(k) .

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

If hat a ,\ hat b are unit vector such that \ hat a+ hat b is a unit vectors, write the value of | hat a- hat b|dot