Home
Class 12
MATHS
For any two vectors -> aand -> bwe alw...

For any two vectors ` -> a`and ` -> b`we always have `| -> adot -> b|lt=| -> a|| -> b|`(Cauchy-Schwartz inequality).

Answer

Step by step text solution for For any two vectors -> aand -> bwe always have | -> adot -> b|lt=| -> a|| -> b|(Cauchy-Schwartz inequality). by MATHS experts to help you in doubts & scoring excellent marks in Class 12 exams.

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|15 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

For any two matrices A and B , we have

For any two vectors vec a\ a n d\ vec b write when | vec a+ vec b|=| vec a|+| vec b| holds.

Knowledge Check

  • For any two sets A and B, A' – B'=

    A
    `A-B`
    B
    `B-A`
    C
    `A cup B`
    D
    `A cap B`
  • Similar Questions

    Explore conceptually related problems

    For any vector vec a\ a n d\ vec b prove that | vec a+ vec b|lt=| vec a|+| vec b|dot

    For any two vectors vec aa n d vec b , prove that | vec a+ vec b|lt=| vec a|+| vec b| (ii) | vec a- vec b|lt=| vec a|+| vec b| (iii) | vec a- vec b|geq| vec a|-| vec b|

    For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

    For any two vectors vec a and vec b , show that : ( vec a+ vec b)dot( vec a- vec b)=0, when | vec a|=| vec b|dot

    For any two vectors vec a and vec b , prove that: | vec a+ vec b|^2=| vec a|^2+| vec b|^2+2 vec adot vec b , | vec a- vec b|^2=| vec a|^2+| vec b|^2-2 vec adot vec b , | vec a+ vec b|^2+| vec a- vec b|^2=2(| vec a|^2+| vec b|^2) and | vec a+ vec b|^2=| vec a- vec b|^2 iff vec a_|_ vec bdot Interpret the result geometrically.

    For two vectors vec A and vec B | vec A + vec B| = | vec A- vec B| is always true when.

    If vec aa n d vec b are two vectors and angle between them is theta, then | vec axx vec b|^2+( vec adot vec b)^2=| vec a|^2| vec b|^2 | vec axx vec b|=( vec adot vec b),iftheta=pi//4 vec axx vec b=( vec adot vec b) hat n ,(w h e r e hat n is unit vector, ) if theta=pi//4 ( vec axx vec b)dot( vec a+ vec b)=0