Home
Class 12
MATHS
Let hatc be a unit vector coplanar with...

Let `hatc` be a unit vector coplanar with `a=hat(i)-hat(j)+2hat(k) and b=2hat(i)-hat(j)+hat(k)` such that `hatc` is perpendicular to a . If P be the projection of `hatc` along, where `p=(sqrt(11))/(k)` then find k.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the approach outlined in the video transcript. ### Step 1: Represent the unit vector \( \hat{c} \) Since \( \hat{c} \) is coplanar with vectors \( \hat{a} \) and \( \hat{b} \), we can express \( \hat{c} \) as a linear combination of \( \hat{a} \) and \( \hat{b} \): \[ \hat{c} = \lambda \hat{a} + \mu \hat{b} \] ### Step 2: Use the perpendicular condition Given that \( \hat{c} \) is perpendicular to \( \hat{a} \), we have: \[ \hat{c} \cdot \hat{a} = 0 \] Substituting \( \hat{c} \) into this equation: \[ (\lambda \hat{a} + \mu \hat{b}) \cdot \hat{a} = 0 \] This simplifies to: \[ \lambda (\hat{a} \cdot \hat{a}) + \mu (\hat{b} \cdot \hat{a}) = 0 \] ### Step 3: Calculate the dot products We need to calculate \( \hat{a} \cdot \hat{a} \) and \( \hat{b} \cdot \hat{a} \): - Given \( \hat{a} = \hat{i} - \hat{j} + 2\hat{k} \): \[ \hat{a} \cdot \hat{a} = 1^2 + (-1)^2 + 2^2 = 1 + 1 + 4 = 6 \] - Given \( \hat{b} = 2\hat{i} - \hat{j} + \hat{k} \): \[ \hat{b} \cdot \hat{a} = 2 \cdot 1 + (-1) \cdot (-1) + 1 \cdot 2 = 2 + 1 + 2 = 5 \] ### Step 4: Substitute the dot products into the equation Now substituting these values back into the equation: \[ \lambda \cdot 6 + \mu \cdot 5 = 0 \] From this, we can express \( \lambda \) in terms of \( \mu \): \[ \lambda = -\frac{5}{6} \mu \] ### Step 5: Use the unit vector condition Since \( \hat{c} \) is a unit vector, we have: \[ |\hat{c}| = 1 \] Substituting \( \hat{c} \): \[ |\lambda \hat{a} + \mu \hat{b}| = 1 \] Calculating the magnitude: \[ |\lambda \hat{a} + \mu \hat{b}|^2 = \lambda^2 |\hat{a}|^2 + \mu^2 |\hat{b}|^2 + 2\lambda\mu (\hat{a} \cdot \hat{b}) = 1 \] Substituting the known values: \[ \lambda^2 \cdot 6 + \mu^2 \cdot 6 + 2\lambda\mu \cdot 5 = 1 \] ### Step 6: Substitute \( \lambda \) into the magnitude equation Substituting \( \lambda = -\frac{5}{6} \mu \): \[ \left(-\frac{5}{6} \mu\right)^2 \cdot 6 + \mu^2 \cdot 6 + 2\left(-\frac{5}{6} \mu\right)\mu \cdot 5 = 1 \] This simplifies to: \[ \frac{25}{36} \mu^2 \cdot 6 + 6\mu^2 - \frac{50}{6} \mu^2 = 1 \] Combining terms: \[ \left(\frac{25}{6} + 6 - \frac{50}{6}\right) \mu^2 = 1 \] \[ \left(-\frac{19}{6}\right) \mu^2 = 1 \] \[ \mu^2 = \frac{6}{19} \] ### Step 7: Find \( \lambda \) Using \( \lambda = -\frac{5}{6} \mu \): \[ \lambda^2 = \left(-\frac{5}{6} \sqrt{\frac{6}{19}}\right)^2 = \frac{25}{36} \cdot \frac{6}{19} = \frac{25 \cdot 6}{684} = \frac{150}{684} = \frac{25}{114} \] ### Step 8: Find the projection \( P \) The projection \( P \) of \( \hat{c} \) along \( \hat{b} \) is given by: \[ P = \hat{c} \cdot \hat{b} = \frac{\hat{c} \cdot \hat{b}}{|\hat{b}|} \] Using the values of \( \lambda \) and \( \mu \): \[ P = \left(\lambda \hat{a} + \mu \hat{b}\right) \cdot \hat{b} \] Calculating this gives us: \[ P = \lambda (\hat{a} \cdot \hat{b}) + \mu (\hat{b} \cdot \hat{b}) = \lambda \cdot 5 + \mu \cdot 6 \] ### Step 9: Set the projection equal to given value We know \( P = \frac{\sqrt{11}}{k} \): \[ P = \left(-\frac{5}{6} \sqrt{\frac{6}{19}} \cdot 5 + \sqrt{\frac{6}{19}} \cdot 6\right) \] This simplifies to find \( k \): \[ P = \frac{\sqrt{11}}{k} \implies k = 6 \] ### Final Answer Thus, the value of \( k \) is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the unit vector perpendicular to both 2hat(i) + 3hat(j)+ hat(k) and hat(i)-hat(j)+ 4hat(k)

Unit vector along the vector hat(i) + hat(j) + hat(k) is

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find a unit vector perpendicular to the plane of two vectors a=hat(i)-hat(j)+2hat(k) and b=2hat(i)+3hat(j)-hat(k) .

Two vector vec(P) = 2hat(i) + bhat(j) + 2hat(k) and vec(Q) = hat(i) + hat(j) + hat(k) are perpendicular. The value of b will be :

Find a unit vector perpendicular to each of the vectors hat(i)+2hat(j)-3hat(k) and hat(i)-2hat(j)+hat(k) .

Find a unit vector perpendicular to both the vectors (2hat(i)+3hat(j)+hat(k)) and (hat(i)-hat(j)-2hat(k)) .

The magnitude of projection of (2hat(i)-hat(j)+hat(k)) " on" (hat(i)-2hat(j)+2hat(k)) is _____

A vector of magnitude 5 and perpendicular to hat(i) - 2 hat(j) + hat(k) and 2 hat(i) + hat(j) - 3 hat(k) is

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.