Home
Class 12
MATHS
If atimesb=c, btimesc=a, ctimesa=b. If v...

If `atimesb=c, btimesc=a, ctimesa=b`. If vectors a, b and c are forming a right handed system, then the volume of tetrahedron formed by vectors `3a-2b+2c, -a-2c and 2a-3b+4c` is

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the tetrahedron formed by the vectors \( \mathbf{v_1} = 3\mathbf{a} - 2\mathbf{b} + 2\mathbf{c} \), \( \mathbf{v_2} = -\mathbf{a} - 2\mathbf{c} \), and \( \mathbf{v_3} = 2\mathbf{a} - 3\mathbf{b} + 4\mathbf{c} \), we will use the formula for the volume \( V \) of a tetrahedron given by: \[ V = \frac{1}{6} | \mathbf{v_1} \cdot (\mathbf{v_2} \times \mathbf{v_3}) | \] ### Step 1: Calculate the cross product \( \mathbf{v_2} \times \mathbf{v_3} \) First, we need to compute the cross product \( \mathbf{v_2} \times \mathbf{v_3} \). \[ \mathbf{v_2} = -\mathbf{a} - 2\mathbf{c} \] \[ \mathbf{v_3} = 2\mathbf{a} - 3\mathbf{b} + 4\mathbf{c} \] Using the distributive property of the cross product: \[ \mathbf{v_2} \times \mathbf{v_3} = (-\mathbf{a} - 2\mathbf{c}) \times (2\mathbf{a} - 3\mathbf{b} + 4\mathbf{c}) \] Expanding this using the distributive property: \[ = -\mathbf{a} \times (2\mathbf{a}) + 3\mathbf{a} \times \mathbf{b} - 4\mathbf{a} \times \mathbf{c} - 2\mathbf{c} \times (2\mathbf{a}) + 6\mathbf{c} \times \mathbf{b} - 8\mathbf{c} \times \mathbf{c} \] Since \( \mathbf{a} \times \mathbf{a} = \mathbf{0} \) and \( \mathbf{c} \times \mathbf{c} = \mathbf{0} \): \[ = 3\mathbf{a} \times \mathbf{b} - 4\mathbf{a} \times \mathbf{c} - 4\mathbf{c} \times \mathbf{a} + 6\mathbf{c} \times \mathbf{b} \] Using the property \( \mathbf{c} \times \mathbf{a} = -\mathbf{a} \times \mathbf{c} \): \[ = 3\mathbf{a} \times \mathbf{b} - 4\mathbf{a} \times \mathbf{c} + 4\mathbf{a} \times \mathbf{c} + 6\mathbf{c} \times \mathbf{b} \] This simplifies to: \[ = 3\mathbf{a} \times \mathbf{b} + 6\mathbf{c} \times \mathbf{b} \] ### Step 2: Calculate the dot product \( \mathbf{v_1} \cdot (\mathbf{v_2} \times \mathbf{v_3}) \) Now we compute \( \mathbf{v_1} \cdot (\mathbf{v_2} \times \mathbf{v_3}) \): \[ \mathbf{v_1} = 3\mathbf{a} - 2\mathbf{b} + 2\mathbf{c} \] So, \[ \mathbf{v_1} \cdot (\mathbf{v_2} \times \mathbf{v_3}) = (3\mathbf{a} - 2\mathbf{b} + 2\mathbf{c}) \cdot (3\mathbf{a} \times \mathbf{b} + 6\mathbf{c} \times \mathbf{b}) \] Using the distributive property: \[ = 3\mathbf{a} \cdot (3\mathbf{a} \times \mathbf{b}) - 2\mathbf{b} \cdot (3\mathbf{a} \times \mathbf{b}) + 2\mathbf{c} \cdot (3\mathbf{a} \times \mathbf{b}) + 3\mathbf{a} \cdot (6\mathbf{c} \times \mathbf{b}) - 2\mathbf{b} \cdot (6\mathbf{c} \times \mathbf{b}) + 2\mathbf{c} \cdot (6\mathbf{c} \times \mathbf{b}) \] Using the property \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{v} \cdot (\mathbf{w} \times \mathbf{u}) \): \[ = 0 - 0 + 2\mathbf{c} \cdot (3\mathbf{a} \times \mathbf{b}) + 6(0) - 0 + 0 \] Thus, we have: \[ = 6 \cdot \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) \] ### Step 3: Calculate the volume \( V \) Now we can find the volume: \[ V = \frac{1}{6} |6 \cdot \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})| \] Since \( \mathbf{c} = \mathbf{a} \times \mathbf{b} \): \[ = \frac{1}{6} |6| = 1 \] Thus, the volume of the tetrahedron is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Volume of parallelopiped formed by vectors atimesb, btimesc and ctimesa is 36 sq.units. then the volumn formed by the vector a b and c is

If a, b and c are non-collinear unit vectors also b, c are non-collinear and 2atimes(btimesc)=b+c , then

Show that the vectors a-2b+4c,-2a+3b-6c and -b+2c are coplanar vector, where a,b,c are non-coplanar vectors.

Add the following algebraic expressions : 2a - 3b + 4c , -3a + 2b - 5c , 7a - c and 3b + 6c

Subtract the sum of a+2b-3c and 2c-3b-4a from the sum of 5b-4c+a and 2c-3b-4a .

If a, b and c are three non-coplanar vectors, then find the value of (a*(btimesc))/(ctimes(a*b))+(b*(ctimesa))/(c*(atimesb)) .

If a,b and c are non-coplanar vectors, prove that 3a-7b-4c, 3a-2b+c and a+b+2c are coplanar.

If a, b and c be the three non-zero vectors satisfying the condition atimesb=c and btimesc=a , then which of the following always hold(s) good?

Write the following in the expanded form: (i) (a+2b+c)^2 (ii) (2a-3b-c)^2

If a,b,c are three non-coplanar vectors, then 3a-7b-4c,3a-2b+c and a+b+lamdac will be coplanar, if lamda is