Home
Class 12
MATHS
Let veca and vecc be unit vectors inclin...

Let `veca` and `vecc` be unit vectors inclined at `pi//3` with each other. If `(veca xx (vecb xx vecc)). (veca xx vecc)=5`, then `[vecavecbvecc]` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and apply the properties of vectors and the scalar triple product. ### Step 1: Identify the Given Information We have two unit vectors, \(\vec{a}\) and \(\vec{c}\), that are inclined at an angle of \(\frac{\pi}{3}\) radians (or 60 degrees) to each other. We also know that: \[ (\vec{a} \times (\vec{b} \times \vec{c})) \cdot (\vec{a} \times \vec{c}) = 5 \] ### Step 2: Use the Scalar Triple Product Identity We can use the identity for the scalar triple product: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] Let \(\vec{u} = \vec{a}\), \(\vec{v} = \vec{b}\), and \(\vec{w} = \vec{c}\). Therefore: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 3: Substitute into the Given Equation Substituting this into the equation, we have: \[ ((\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}) \cdot (\vec{a} \times \vec{c}) = 5 \] ### Step 4: Calculate \(\vec{a} \cdot \vec{c}\) Since \(\vec{a}\) and \(\vec{c}\) are unit vectors and the angle between them is \(\frac{\pi}{3}\): \[ \vec{a} \cdot \vec{c} = |\vec{a}| |\vec{c}| \cos\left(\frac{\pi}{3}\right) = 1 \cdot 1 \cdot \frac{1}{2} = \frac{1}{2} \] ### Step 5: Substitute \(\vec{a} \cdot \vec{c}\) into the Equation Now substituting \(\vec{a} \cdot \vec{c} = \frac{1}{2}\): \[ \left(\frac{1}{2} \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}\right) \cdot (\vec{a} \times \vec{c}) = 5 \] ### Step 6: Expand the Dot Product Expanding the dot product: \[ \frac{1}{2} (\vec{b} \cdot (\vec{a} \times \vec{c})) - (\vec{a} \cdot \vec{b}) (\vec{c} \cdot (\vec{a} \times \vec{c})) = 5 \] Since \(\vec{c} \cdot (\vec{a} \times \vec{c}) = 0\) (as \(\vec{c}\) is parallel to itself), we simplify to: \[ \frac{1}{2} (\vec{b} \cdot (\vec{a} \times \vec{c})) = 5 \] ### Step 7: Solve for \(\vec{b} \cdot (\vec{a} \times \vec{c})\) Multiplying both sides by 2: \[ \vec{b} \cdot (\vec{a} \times \vec{c}) = 10 \] ### Step 8: Relate to Volume of Parallelepiped The expression \(\vec{b} \cdot (\vec{a} \times \vec{c})\) represents the volume of the parallelepiped formed by vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). Thus, the volume \(V\) is: \[ V = 10 \] ### Step 9: Find \([\vec{a} \vec{b} \vec{c}]\) The volume of the parallelepiped can also be expressed as: \[ [\vec{a} \vec{b} \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] Since the order of the vectors matters, we have: \[ [\vec{a} \vec{b} \vec{c}] = -10 \] ### Final Answer Thus, the value of \([\vec{a} \vec{b} \vec{c}]\) is: \[ \boxed{-10} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

If veca, vecb, vecc be three units vectors perpendicular to each other, then |(2veca+3vecb+4vecc).(veca xx vecb+5vecbxxvecc+6vecc xx veca)| is equal to

Prove that veca. [(vecb + vecc) xx (veca + 3 vecb + 4 vecc) ]= [{:(veca,vecb,vecc):}]

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

Let veca, vecb and vecc are three unit vectors in a plane such that they are equally inclined to each other, then the value of (veca xx vecb).(vecb xx vecc) + (vecb xx vecc). (vecc xx veca)+(vecc xx veca). (veca xx vecb) can be

If veca,vecb are two unit vectors such that veca+(veca xx vecb)=vecc , where |vecc|=2 , then value of [vecavecbvecc] is

Let veca vecb and vecc be non- zero vectors aned vecV_(1) =veca xx (vecb xx vecc) and vecV_(2) = (veca xx vecb) xx vecc .vectors vecV_(1) and vecV_(2) are equal . Then

Vectors veca, vecb, vecc are three unit vectors and vecc is equally inclined to both veca and vecb . Let veca xx (vecb xx vecc) + vecb xx (vecc xx veca) =(4+x^(2))vecb-(4xcos^(2)theta)veca , then veca and vecb are non-collinear vectors, x gt 0

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|