Home
Class 12
MATHS
The volume of the tetrahedron whose vert...

The volume of the tetrahedron whose vertices are the points with position vectors `hat(i)+hat(j)+hat(k), -hat(i)-3hat(j)+7hat(k), hat(i)+2hat(j)-7hat(k) and 3hat(i)-4hat(j)+lambdahat(k)` is 22, then the digit at unit place of `lambda` is.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \(\lambda\) such that the volume of the tetrahedron formed by the given vertices is 22, we can follow these steps: ### Step 1: Identify the position vectors Let the vertices of the tetrahedron be represented by their position vectors: - \( \mathbf{A} = \hat{i} + \hat{j} + \hat{k} \) - \( \mathbf{B} = -\hat{i} - 3\hat{j} + 7\hat{k} \) - \( \mathbf{C} = \hat{i} + 2\hat{j} - 7\hat{k} \) - \( \mathbf{D} = 3\hat{i} - 4\hat{j} + \lambda\hat{k} \) ### Step 2: Calculate the position vectors relative to point A We need to find the vectors \(\mathbf{AB}\), \(\mathbf{AC}\), and \(\mathbf{AD}\): - \( \mathbf{AB} = \mathbf{B} - \mathbf{A} = (-\hat{i} - 3\hat{j} + 7\hat{k}) - (\hat{i} + \hat{j} + \hat{k}) = -2\hat{i} - 4\hat{j} + 6\hat{k} \) - \( \mathbf{AC} = \mathbf{C} - \mathbf{A} = (\hat{i} + 2\hat{j} - 7\hat{k}) - (\hat{i} + \hat{j} + \hat{k}) = 0\hat{i} + \hat{j} - 8\hat{k} \) - \( \mathbf{AD} = \mathbf{D} - \mathbf{A} = (3\hat{i} - 4\hat{j} + \lambda\hat{k}) - (\hat{i} + \hat{j} + \hat{k}) = 2\hat{i} - 5\hat{j} + (\lambda - 1)\hat{k} \) ### Step 3: Set up the volume formula The volume \(V\) of the tetrahedron can be calculated using the formula: \[ V = \frac{1}{6} \left| \mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD}) \right| \] We need to compute the cross product \(\mathbf{AC} \times \mathbf{AD}\). ### Step 4: Calculate the cross product \(\mathbf{AC} \times \mathbf{AD}\) Using the vectors: \[ \mathbf{AC} = \begin{pmatrix} 0 \\ 1 \\ -8 \end{pmatrix}, \quad \mathbf{AD} = \begin{pmatrix} 2 \\ -5 \\ \lambda - 1 \end{pmatrix} \] The cross product is given by the determinant: \[ \mathbf{AC} \times \mathbf{AD} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & -8 \\ 2 & -5 & \lambda - 1 \end{vmatrix} \] Calculating this determinant, we have: \[ = \hat{i} \begin{vmatrix} 1 & -8 \\ -5 & \lambda - 1 \end{vmatrix} - \hat{j} \begin{vmatrix} 0 & -8 \\ 2 & \lambda - 1 \end{vmatrix} + \hat{k} \begin{vmatrix} 0 & 1 \\ 2 & -5 \end{vmatrix} \] Calculating each of these: 1. For \(\hat{i}\): \[ 1(\lambda - 1) - (-8)(-5) = \lambda - 1 - 40 = \lambda - 41 \] 2. For \(-\hat{j}\): \[ 0(\lambda - 1) - (-8)(2) = 16 \] 3. For \(\hat{k}\): \[ 0(-5) - 1(2) = -2 \] Thus, \[ \mathbf{AC} \times \mathbf{AD} = (\lambda - 41)\hat{i} - 16\hat{j} - 2\hat{k} \] ### Step 5: Calculate the dot product \(\mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD})\) Now, we compute: \[ \mathbf{AB} \cdot (\mathbf{AC} \times \mathbf{AD}) = \begin{pmatrix} -2 \\ -4 \\ 6 \end{pmatrix} \cdot \begin{pmatrix} \lambda - 41 \\ -16 \\ -2 \end{pmatrix} \] Calculating this gives: \[ = -2(\lambda - 41) - 4(-16) + 6(-2) \] \[ = -2\lambda + 82 + 64 - 12 = -2\lambda + 134 \] ### Step 6: Set the volume equal to 22 Setting the volume equal to 22: \[ \frac{1}{6} |-2\lambda + 134| = 22 \] Multiplying both sides by 6: \[ |-2\lambda + 134| = 132 \] This gives two equations: 1. \( -2\lambda + 134 = 132 \) 2. \( -2\lambda + 134 = -132 \) ### Step 7: Solve for \(\lambda\) 1. From \( -2\lambda + 134 = 132 \): \[ -2\lambda = -2 \implies \lambda = 1 \] 2. From \( -2\lambda + 134 = -132 \): \[ -2\lambda = -266 \implies \lambda = 133 \] ### Step 8: Find the unit place of \(\lambda\) The possible values for \(\lambda\) are 1 and 133. The unit place of \(\lambda\) is: - For \(\lambda = 1\), the unit place is 1. - For \(\lambda = 133\), the unit place is 3. Since the problem asks for the unit place of \(\lambda\), we can conclude that the answer is **1**.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the value of lamda , if the points with position vectors 3hat(i)- 2hat(j)- hat(k), 2hat(i) + 3hat(j)- 4hat(k), -hat(i) + hat(j) + 2hat(k), 4hat(i) + 5hat(j) + lamda hat(k) are coplanar.

Show that the vectors hat(i)-hat(j)-6hat(k),hat(i)-3hat(j)+4hat(k)and2hat(i)-5hat(j)+3hat(k) are coplanar.

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

The area ( in sq. units ) of the triangle having vertices with position vectors hat(i) - 2 hat(j) +3 hat(k), - 2 hat(i) + 3 hat(j) - hat(k) and 4 hat(i)- 7 hat(j) + 7 hat(k) is

Show that the vectors 2hat(i)-hat(j)+hat(k) and hat(i)-3hat(j)-5hat(k) are at right angles.

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

If the position vector of the vertices of a triangle are hat(i)-hat(j)+2hat(k), 2hat(i)+hat(j)+hat(k) & 3hat(i)-hat(j)+2hat(k) , then find the area of the triangle.

If a=2hat(i)+3hat(j)-hat(k), b=-hat(i)+2hat(j)-4hat(k), c=hat(i)+hat(j)+hat(k) , then find the value of (atimesb)*(atimesc) .

Find the value of lambda if the volume of a tetrashedron whose vertices are with position vectors hat i-6 hat j+10 hat k ,- hat i-3 hat j+3 hat k ,5 hat i- hat j+lambda hat ka n d7 hat i-4 hat j+7 hat k is 11 cubic unit.