Home
Class 12
MATHS
The volume of a tetrahedron formed by...

The volume of a tetrahedron formed by the coterminous edges ` vec a , vec b ,a n d vec c` is 3. Then the volume of the parallelepiped formed by the coterminous edges ` vec a+ vec b , vec b+ vec ca n d vec c+ vec a` is `6` b. `18` c. `36` d. 9

Text Solution

Verified by Experts

The correct Answer is:
`(8)`
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Product of Vectors Exercise 5 : Matching Type Questions|2 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Volume of parallelepiped formed by vectors vec axx vec b , vec bxx vec ca n d vec cxx vec ai s36s qdot units. Column I|Column II Volume of parallelepiped formed by vectors vec a , vec b ,a n d vec c is|p. 0sq.units Volume of tetrahedron formed by vectors vec a , vec b ,a n d vec c is|q. 12 sq. units Volume of parallelepiped formed by vectors vec a+ vec b , vec b+ vec ca n d vec c+ vec a is|r. 6 sq. units Volume of parallelepiped formed by vectors vec a- vec b , vec b- vec ca n d vec c- vec a is|s. 1 sq. units

Find | vec a- vec b|,\ if:| vec a|=3,\ | vec b|=4\ a n d\ vec adot vec b=1

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot vec b=4

Prove that [ vec a , vec b , vec c+ vec d]=[ vec a , vec b , vec c]+[ vec a , vec b , vec d]

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If vec a ,\ vec b ,\ vec c are three non coplanar vectors such that vec d dot vec a= vec d dot vec b= vec d dot vec c=0, then show that d is the null vector.

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

Find | vec a|a n d\ | vec b| , if : ( vec a+ vec b)dot'( vec a- vec b)=8\ a n d\ | vec a|=8| vec b|

If vec aX vec b= vec cX vec d and vec aX vec c= vec bx vec d , show that vec a- vec d is parallel to vec b- vec c , where vec a!= vec d and vec b!= vec cdot

If vec a , vec b , vec ca n d vec d are distinct vectors such that vec axx vec c= vec bxx vec da n d vec axx vec b= vec cxx vec d , prove that ( vec a- vec d). (vec b- vec c)!=0,