Home
Class 12
MATHS
Let a, b and c be three unit vectors suc...

Let a, b and c be three unit vectors such that `atimes(btimesc)=(sqrt(3))/(2)(b+c)`. If b is not parallel to c , then the angle between a and b is

A

`(3pi)/(4)`

B

`(pi)/(2)`

C

`(2pi)/(3)`

D

`(5pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the unit vectors \( \mathbf{a} \) and \( \mathbf{b} \), we start with the given equation: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = \frac{\sqrt{3}}{2} (\mathbf{b} + \mathbf{c}) \] ### Step 1: Use the vector triple product identity We can use the vector triple product identity, which states that: \[ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \] Applying this to our equation, we have: \[ \mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \] ### Step 2: Set the equations equal Now we equate this to the right-hand side of the original equation: \[ (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} = \frac{\sqrt{3}}{2} \mathbf{b} + \frac{\sqrt{3}}{2} \mathbf{c} \] ### Step 3: Compare coefficients From this equation, we can compare the coefficients of \( \mathbf{b} \) and \( \mathbf{c} \): 1. Coefficient of \( \mathbf{b} \): \[ \mathbf{a} \cdot \mathbf{c} = \frac{\sqrt{3}}{2} \tag{1} \] 2. Coefficient of \( \mathbf{c} \): \[ -(\mathbf{a} \cdot \mathbf{b}) = \frac{\sqrt{3}}{2} \implies \mathbf{a} \cdot \mathbf{b} = -\frac{\sqrt{3}}{2} \tag{2} \] ### Step 4: Find the angle between \( \mathbf{a} \) and \( \mathbf{c} \) From equation (1), we know: \[ \mathbf{a} \cdot \mathbf{c} = |\mathbf{a}| |\mathbf{c}| \cos \theta_{ac} = 1 \cdot 1 \cdot \cos \theta_{ac} = \cos \theta_{ac} \] Thus, \[ \cos \theta_{ac} = \frac{\sqrt{3}}{2} \implies \theta_{ac} = 30^\circ \text{ or } \frac{\pi}{6} \] ### Step 5: Find the angle between \( \mathbf{a} \) and \( \mathbf{b} \) From equation (2), we have: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta_{ab} = 1 \cdot 1 \cdot \cos \theta_{ab} = \cos \theta_{ab} \] Thus, \[ \cos \theta_{ab} = -\frac{\sqrt{3}}{2} \implies \theta_{ab} = 150^\circ \text{ or } \frac{5\pi}{6} \] ### Conclusion The angle between the unit vectors \( \mathbf{a} \) and \( \mathbf{b} \) is: \[ \theta_{ab} = \frac{5\pi}{6} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let veca,vecb and vecc be three vectors such that |veca |=sqrt(3),|vec b|=5 , vec b .vec c = 10 and the angle between vec b and vec c is pi/3, if vec a is perpendicular to the vector vec b xx vec c, then | veca xx (vecbxxvecc)| is equal to __________.

If vec a , vec b and vec c are non-coplanar unit vectors such that vec axx( vec bxx vec c)=( vec b+ vec c)/(sqrt(2)) , then the angle between vec a and vec b is a. 3pi//4 b. pi//4 c. pi//2 d. pi

Let vec a=a_1 hat i+a_2 hat j+a_3 hat k , vec b=b_1 hat i+b_2 hat j+b_3 hat k and vec c=c_1 hat i+c_2 hat j+c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a and vec b . If the angle between a and b is pi/6, then prove that |[a_1,a_2,a_3],[b_1,b_2,b_3],[c_1,c_2,c_3]|^2=1/4(a_1 ^2+a_2 ^2+a_3 ^2)(b_1 ^2+b_2 ^2+b_3 ^2)

Let a,b and c be three unit vectors such that 3a+4b+5c=0 . Then which of the following statements is true?

Let vec a=a_1 hat i+a_2 hat j+a_2 hat k , vec b=b_1 hat i+a_2 hat j+b_2 hat k , and vec c=c_1 hat i+c_2 hat j+c_2 hat k , be three non-zero vectors such that vec c is a unit vector perpendicular to both vectors vec a and vec b . If the angle between a and b is pi//6, then |[a_1,a_2,a_3],[b_1,b_2,b_3],[c_1,c_2,c_3]|^2 is equal to

Let a , b and c be three unit vectors out of which vectors b and c are non -parallel. If alpha " and " beta are the angles which vector a makes with vectors b and c respectively and axx (b xx c) = (1)/(2) b, Then |alpha -beta| is equal to

Let vec a = a_1 hat i + a_2 hat j+ a_3 hat k;vec b = b_1 hat i+ b_2 hat j+ b_3 hat k ; vec c= c_1hat i + c_2 hat j+ c_3 hat k be three non-zero vectors such that vec c is a unit vector perpendicular to both vec a & vec b . If the angle between vec a and vec b is pi/6 , then |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|^2=

If three unit vectors vec a , vec b , and vec c satisfy vec a+ vec b+ vec c=0, then find the angle between vec a and vec bdot

If hat a , hat b ,a n d hat c are three unit vectors, such that hat a+ hat b+ hat c is also a unit vector and theta_1,theta_2a n dtheta_3 are angles between the vectors hat a , hat b ; hat b , hat ca n d hat c , hat a respectively, then among theta_1,theta_2,a n dtheta_3dot a. all are acute angles b. all are right angles c. at least one is obtuse angle d. none of these

Let veca=a_(1)hati+a_(2)hatj+a_(3)hatk,vecb=b_(1)hati + b_(2)hatj + b_(3)hatk and vecc=c_(1)hati +c_(2)hatj +c_(3)hatk be three non-zero vectors such that vecc is a unit vector perpendicular to both vectors, veca and vecb . If the angle between veca and vecb is pi//6 "then" |{:(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3)):}|^(2) is equal to

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let O be the origin and vec(OX) , vec(OY) , vec(OZ) be three unit vec...

    Text Solution

    |

  2. Let O be the origin, and O X , O Y , O Z be three unit vectors ...

    Text Solution

    |

  3. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  4. Let vec a , vec b and vec c be three non-zero vectors such that no ...

    Text Solution

    |

  5. If vec a , vec ba n d vec c are unit vectors satisfying | vec a- v...

    Text Solution

    |

  6. The vector(s) which is/are coplanar with vectors hat i+ hat j+2 hat...

    Text Solution

    |

  7. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  8. Two adjacent sides of a parallelogram A B C D are given by vec A B=...

    Text Solution

    |

  9. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  10. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  11. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  12. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  13. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  14. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  15. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  16. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  17. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  18. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  19. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  20. The value of a so that the volume of parallelepiped formed by hat i...

    Text Solution

    |