Home
Class 12
MATHS
If veca,vecb,vecc and vecd are unit vec...

If `veca,vecb,vecc and vecd` are unit vectors such that `(vecaxxvecb)*(veccxxvecd)=1 and veca.vecc=1/2,` then

A

a, b, c are non-coplanar

B

a, b, d are non-coplanar

C

b, d are non-parallel

D

a, d are parallel and b, c are parallel

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given conditions involving the vectors \( \vec{a}, \vec{b}, \vec{c}, \) and \( \vec{d} \). ### Step-by-Step Solution: 1. **Understanding the Given Conditions:** - We know that \( \vec{a}, \vec{b}, \vec{c}, \) and \( \vec{d} \) are unit vectors. - The condition given is \( (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 1 \). - Additionally, we have \( \vec{a} \cdot \vec{c} = \frac{1}{2} \). 2. **Using the Dot Product of Cross Products:** - The expression \( (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) \) can be rewritten using the properties of the dot and cross products: \[ (\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = |\vec{a} \times \vec{b}| |\vec{c} \times \vec{d}| \cos(\gamma) \] - Here, \( \gamma \) is the angle between the vectors \( \vec{a} \times \vec{b} \) and \( \vec{c} \times \vec{d} \). 3. **Finding the Magnitudes of the Cross Products:** - Since \( \vec{a} \) and \( \vec{b} \) are unit vectors, we have: \[ |\vec{a} \times \vec{b}| = |\vec{a}| |\vec{b}| \sin(\alpha) = 1 \cdot 1 \cdot \sin(\alpha) = \sin(\alpha) \] - Similarly, for \( \vec{c} \) and \( \vec{d} \): \[ |\vec{c} \times \vec{d}| = |\vec{c}| |\vec{d}| \sin(\beta) = 1 \cdot 1 \cdot \sin(\beta) = \sin(\beta) \] 4. **Setting Up the Equation:** - Substituting these into our earlier equation gives: \[ \sin(\alpha) \sin(\beta) \cos(\gamma) = 1 \] 5. **Analyzing the Conditions:** - Since \( \sin(\alpha) \) and \( \sin(\beta) \) can each be at most 1, the maximum product \( \sin(\alpha) \sin(\beta) \) can be is 1. This means: \[ \sin(\alpha) = 1 \quad \text{and} \quad \sin(\beta) = 1 \quad \text{and} \quad \cos(\gamma) = 1 \] - Thus, we conclude that \( \alpha = 90^\circ \) and \( \beta = 90^\circ \), and \( \gamma = 0^\circ \). 6. **Conclusion About the Vectors:** - Since \( \gamma = 0^\circ \), this implies that \( \vec{a} \times \vec{b} \) is parallel to \( \vec{c} \times \vec{d} \). - The angles \( \alpha \) and \( \beta \) being \( 90^\circ \) indicates that \( \vec{a} \) is perpendicular to \( \vec{b} \) and \( \vec{c} \) is perpendicular to \( \vec{d} \). 7. **Finding the Angle Between \( \vec{a} \) and \( \vec{c} \):** - We know \( \vec{a} \cdot \vec{c} = \frac{1}{2} \). - Since both are unit vectors, we have: \[ |\vec{a}| |\vec{c}| \cos(\delta) = \frac{1}{2} \implies 1 \cdot 1 \cdot \cos(\delta) = \frac{1}{2} \] - Thus, \( \cos(\delta) = \frac{1}{2} \), which gives \( \delta = 60^\circ \). 8. **Final Configuration:** - We can now visualize the vectors in a plane: - Let \( \vec{a} \) be along the x-axis. - \( \vec{b} \) will be along the y-axis (90 degrees to \( \vec{a} \)). - \( \vec{c} \) will be at a 60-degree angle from \( \vec{a} \). - \( \vec{d} \) will be perpendicular to \( \vec{c} \). ### Final Conclusion: - The vectors \( \vec{a}, \vec{b}, \vec{c}, \vec{d} \) are all coplanar, and we have established their relationships and angles.
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If veca, vecb, vecc and vecd ar distinct vectors such that veca xx vecc = vecb xx vecd and veca xx vecb = vecc xx vecd . Prove that (veca-vecd).(vecc-vecb)ne 0, i.e., veca.vecb + vecd.vecc nevecd.vecb + veca.vecc.

If veca,vecb,vecc,vecd are unit vectors such that veca.vecb=1/2 , vecc.vecd=1/2 and angle between veca xx vecb and vecc xx vecd is pi/6 then the value of |[veca \ vecb \ vecd]vecc-[veca \ vecb \ vecc]vecd|=

If the vectors veca, vecb, vecc, vecd are coplanar show that (vecaxxvecb)xx(veccxxvecd)=vec0

If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are non coplanar vectors such that vecbxxvecc=veca, vecaxxvecb=vecc and veccxxveca=vecb then (A) |veca|+|vecb|+|vecc|=3 (B) |vecb|=1 (C) |veca|=1 (D) none of these

If veca,vecb,vecc are unit vectors such that veca is perpendicular to vecb and vecc and |veca+vecb+vecc|=1 then the angle between vecb and vecc is (A) pi/2 (B) pi (C) 0 (D) (2pi)/3

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|

If the vectors veca, vecb, vecc and vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd) is equal to

If veca,vecb and vecc are unit vectors such that veca+vecb+vecc=vec0 then the value of veca.vecb+vecb.vecc+vecc.veca is a) 1 b) 0 c) 3 d) -3/2

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let P,Q R and S be the points on the plane with position vectors -2hat...

    Text Solution

    |

  2. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  3. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  4. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  5. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  6. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  7. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  8. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  9. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  10. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  11. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  12. The value of a so that the volume of parallelepiped formed by hat i...

    Text Solution

    |

  13. If vec a=( hat i+ hat j+ hat k), vec a. vec b=1a n d vec axx vec b= h...

    Text Solution

    |

  14. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |

  15. If veca and vecb are two unit vectors such that veca + 2vecb and 5 vec...

    Text Solution

    |

  16. Let a= 2hat(i) -2hat(k) , b=hat(i) +hat(j) and c be a vectors suc...

    Text Solution

    |

  17. If [axxb bxxc c xxa]=lambda[abc]^(2), then lambda is equal to

    Text Solution

    |

  18. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  19. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  20. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |