Home
Class 12
MATHS
The edges of a parallelopiped are of uni...

The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors `hat(a), hat(b), hat(c)` such that `hat(a)*hat(b)=hat(b)*hat(c)=hat(c)*hat(a)=(1)/(2).` Then, the volume of the parallelopiped is

A

a) `(1)/(sqrt(2))` cu units

B

b) `(1)/(2sqrt(2))` cu units

C

c) `(sqrt(3))/(2)` cu units

D

d) `(1)/(sqrt(3))` cu units

Text Solution

AI Generated Solution

The correct Answer is:
To find the volume of the parallelepiped formed by the unit vectors \(\hat{a}\), \(\hat{b}\), and \(\hat{c}\) with the given conditions, we can follow these steps: ### Step 1: Understanding the Given Information We are given that: - \(\hat{a}\), \(\hat{b}\), and \(\hat{c}\) are unit vectors. - The dot products between the vectors are: \[ \hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2} \] ### Step 2: Volume of the Parallelepiped The volume \(V\) of the parallelepiped formed by the vectors \(\hat{a}\), \(\hat{b}\), and \(\hat{c}\) can be calculated using the scalar triple product: \[ V = |\hat{a} \cdot (\hat{b} \times \hat{c})| \] Alternatively, the volume can also be expressed as the square root of the determinant of the matrix formed by the dot products of the vectors: \[ V^2 = \begin{vmatrix} \hat{a} \cdot \hat{a} & \hat{a} \cdot \hat{b} & \hat{a} \cdot \hat{c} \\ \hat{b} \cdot \hat{a} & \hat{b} \cdot \hat{b} & \hat{b} \cdot \hat{c} \\ \hat{c} \cdot \hat{a} & \hat{c} \cdot \hat{b} & \hat{c} \cdot \hat{c} \end{vmatrix} \] ### Step 3: Construct the Matrix Since \(\hat{a}\), \(\hat{b}\), and \(\hat{c}\) are unit vectors, we have: \[ \hat{a} \cdot \hat{a} = 1, \quad \hat{b} \cdot \hat{b} = 1, \quad \hat{c} \cdot \hat{c} = 1 \] And the dot products are: \[ \hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2} \] Thus, the matrix becomes: \[ \begin{vmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 1 \end{vmatrix} \] ### Step 4: Calculate the Determinant Now we calculate the determinant: \[ \text{Det} = 1 \left( 1 \cdot 1 - \frac{1}{2} \cdot \frac{1}{2} \right) - \frac{1}{2} \left( \frac{1}{2} \cdot 1 - \frac{1}{2} \cdot \frac{1}{2} \right) + \frac{1}{2} \left( \frac{1}{2} \cdot \frac{1}{2} - \frac{1}{2} \cdot 1 \right) \] Calculating each term: 1. First term: \(1 \cdot (1 - \frac{1}{4}) = 1 \cdot \frac{3}{4} = \frac{3}{4}\) 2. Second term: \(-\frac{1}{2} \left( \frac{1}{2} - \frac{1}{4} \right) = -\frac{1}{2} \cdot \frac{1}{4} = -\frac{1}{8}\) 3. Third term: \(\frac{1}{2} \left( \frac{1}{4} - \frac{1}{2} \right) = \frac{1}{2} \cdot -\frac{1}{4} = -\frac{1}{8}\) Combining these results: \[ \text{Det} = \frac{3}{4} - \frac{1}{8} - \frac{1}{8} = \frac{3}{4} - \frac{2}{8} = \frac{3}{4} - \frac{1}{4} = \frac{2}{4} = \frac{1}{2} \] ### Step 5: Volume Calculation Thus, we have: \[ V^2 = \frac{1}{2} \implies V = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} \] ### Final Answer Therefore, the volume of the parallelepiped is: \[ \boxed{\frac{1}{\sqrt{2}} \text{ cubic units}} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the altitude of a parallelopiped whose three conterminous edges are verctors A=hat(i)+hat(j)+hat(k), B=2hat(i)+4hat(j)-hat(k) and C=hat(i)+hat(j)+3hat(k) with A and B as the sides of the base of the parallelopiped.

If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+hat(j)+chat(k) , where a, b, c are coplanar, then a+b+c-abc=

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

Unit vectors perpendicular to the plane of vectors vec(a) = 2 hat(*i) - 6 hat(j) - 3 hat(k) and vec(b) = 4 hat(i) + 3 hat(j) - hat(k) are

Find the volume of the parallelopiped whose edges are represented by vec(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) , vec(b) = hat(i) + 2 hat(j) - hat(k), vec(c) = 3 hat(i) - hat(j) + 2 hat(k)

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors -> a=2 hat i+3 hat j- hat k and -> b= hat i-2 hat j+ hat k .

Find a vector of magnitude 5 units and parallel to the resultant of the vectors vec a=2hat i +3hat j -hat k and vec b=hat i-2hat j+ hat k

If hat(a) and hat(b) are unit vectors and theta is the angle between them, prove that "tan"(theta)/(2)= (|hat(a)-hat(b)|)/(|hat(a)+ hat(b)|)

Find a vector magnitude 5 units, and parallel to the resultant of the vectors vec a=2 hat i+3 hat j- hat k and vec b= hat i-2 hat j+ hat kdot

Find a vector magnitude 5 units, and parallel to the resultant of the vectors vec a=2 hat i+3 hat j- hat k and vec b= hat i-2 hat j+ hat kdot

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If aa n db are vectors in space given by vec a=( hat i-2 hat j)/(sq...

    Text Solution

    |

  2. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  3. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  4. Let two non-collinear unit vectors veca and vecb form an acute angle. ...

    Text Solution

    |

  5. Let the vectors PQ,OR,RS,ST,TU and UP represent the sides of a regular...

    Text Solution

    |

  6. The number of distinct real values of lambda , for which the vectors...

    Text Solution

    |

  7. Let veca,vecb,vecc be unit vectors such that veca+vecb+vecc=vec0. Whic...

    Text Solution

    |

  8. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  9. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  10. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  11. The value of a so that the volume of parallelepiped formed by hat i...

    Text Solution

    |

  12. If vec a=( hat i+ hat j+ hat k), vec a. vec b=1a n d vec axx vec b= h...

    Text Solution

    |

  13. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |

  14. If veca and vecb are two unit vectors such that veca + 2vecb and 5 vec...

    Text Solution

    |

  15. Let a= 2hat(i) -2hat(k) , b=hat(i) +hat(j) and c be a vectors suc...

    Text Solution

    |

  16. If [axxb bxxc c xxa]=lambda[abc]^(2), then lambda is equal to

    Text Solution

    |

  17. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  18. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  19. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  20. The vectors vec a and vec b are not perpendicular and vec c and v...

    Text Solution

    |