Home
Class 12
MATHS
The unit vector which is orthogonal to t...

The unit vector which is orthogonal to the vector `3hati+2hatj+6hatk` and is coplanar with the vectors `2hati+hatj+hatk` and `hati-hatj+hatk` is (A) `(2hati-6hatj+hatk)/sqrt(41)` (B) `(2hati-3hatj)/sqrt(3)` (C) `3hatj-hatk)/sqrt(10)` (D) `(4hati+3hatj-3hatk)/sqrt(34)`

A

`(2hati-6hatj+hatk)/(sqrt(41))`

B

`(2hati-3hatj)/(sqrt(13))`

C

`(3hatj-hatk)/(sqrt(10))`

D

`(4hati+3hatj-3hatk)/(sqrt(34))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find a unit vector that is orthogonal to the vector \( \mathbf{b} = 3\hat{i} + 2\hat{j} + 6\hat{k} \) and is coplanar with the vectors \( \mathbf{u} = 2\hat{i} + \hat{j} + \hat{k} \) and \( \mathbf{v} = \hat{i} - \hat{j} + \hat{k} \). ### Step 1: Define the unit vector Let the unit vector be represented as \( \mathbf{a} = \lambda_1 \hat{i} + \lambda_2 \hat{j} + \lambda_3 \hat{k} \). ### Step 2: Establish the coplanarity condition Since \( \mathbf{a} \) is coplanar with \( \mathbf{u} \) and \( \mathbf{v} \), we can express \( \mathbf{a} \) as a linear combination of \( \mathbf{u} \) and \( \mathbf{v} \): \[ \mathbf{a} = \alpha \mathbf{u} + \beta \mathbf{v} \] Expanding this gives: \[ \mathbf{a} = \alpha (2\hat{i} + \hat{j} + \hat{k}) + \beta (\hat{i} - \hat{j} + \hat{k}) = (2\alpha + \beta)\hat{i} + (\alpha - \beta)\hat{j} + (\alpha + \beta)\hat{k} \] Let: \[ \lambda_1 = 2\alpha + \beta, \quad \lambda_2 = \alpha - \beta, \quad \lambda_3 = \alpha + \beta \] ### Step 3: Apply the orthogonality condition The vector \( \mathbf{a} \) must be orthogonal to \( \mathbf{b} \). This gives us the condition: \[ \mathbf{a} \cdot \mathbf{b} = 0 \] Calculating the dot product: \[ (2\alpha + \beta) \cdot 3 + (\alpha - \beta) \cdot 2 + (\alpha + \beta) \cdot 6 = 0 \] Expanding this: \[ 3(2\alpha + \beta) + 2(\alpha - \beta) + 6(\alpha + \beta) = 0 \] This simplifies to: \[ 6\alpha + 3\beta + 2\alpha - 2\beta + 6\alpha + 6\beta = 0 \] Combining like terms: \[ (6\alpha + 2\alpha + 6\alpha) + (3\beta - 2\beta + 6\beta) = 0 \] This results in: \[ 14\alpha + 7\beta = 0 \] From here, we can express \( \beta \) in terms of \( \alpha \): \[ \beta = -2\alpha \] ### Step 4: Substitute back into the expressions for \( \lambda_1, \lambda_2, \lambda_3 \) Substituting \( \beta = -2\alpha \) into the expressions for \( \lambda_1, \lambda_2, \lambda_3 \): \[ \lambda_1 = 2\alpha - 2\alpha = 0 \] \[ \lambda_2 = \alpha - (-2\alpha) = 3\alpha \] \[ \lambda_3 = \alpha + (-2\alpha) = -\alpha \] Thus, we have: \[ \mathbf{a} = 0\hat{i} + 3\alpha\hat{j} - \alpha\hat{k} = \alpha(0\hat{i} + 3\hat{j} - \hat{k}) \] ### Step 5: Normalize the vector to find the unit vector The magnitude of \( \mathbf{a} \) is: \[ \|\mathbf{a}\| = \sqrt{0^2 + (3\alpha)^2 + (-\alpha)^2} = \sqrt{9\alpha^2 + \alpha^2} = \sqrt{10\alpha^2} = \sqrt{10}|\alpha| \] To find the unit vector: \[ \hat{a} = \frac{\mathbf{a}}{\|\mathbf{a}\|} = \frac{3\hat{j} - \hat{k}}{\sqrt{10}} \] ### Final Answer Thus, the required unit vector is: \[ \hat{a} = \frac{3\hat{j} - \hat{k}}{\sqrt{10}} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

The unit vector which is orhtogonal to the vector 3hati+2hatj+6hatk and is coplanar with vectors 2hati+hatj+hatk and hati-hatj+hatk , is

The unit vector which is orthogonal to the vector 5hati + 2hatj + 6hatk and is coplanar with vectors 2hati + hatj + hatk and hati - hatj + hatk is (a) (2hati - 6hatj + hatk)/sqrt41 (b) (2hati-3hatj)/sqrt13 (c) (3 hatj -hatk)/sqrt10 (d) (4hati + 3hatj - 3hatk)/sqrt34

A unit vector int eh plane of the vectors 2hati+hatj+hatk, hati-hatj+hatk and orthogonal to 5hati+2hatj-6hatk is (A) (6hati-5hatk)/sqrt(6) (B) (3hatj-hatk)/sqrt(10) (C) (hati-5hatj)/sqrt(29) (D) (2hati+hatj-2hatk)/3

Find the angle between the vectors 4hati-2hatj+4hatk and 3hati-6hatj-2hatk.

The unit vector perpendicular to the vectors 6hati+2hatj+3hatk and 3hati-6hatj-2hatk , is

Find a unit vector perpendicular to both the vectors 2hati+3hatj+hatk) and (hati-hatj+2hatk) .

A vector coplanar with vectors hati + hatj and hat j + hatk and parallel to the vector 2hati -2 hatj - 4 hatk , is

Show that the vectors 2hati-3hatj+4hatk and -4hati+6hatj-8hatk are collinear.

Find a unit vector perpendicular to both the vectors (2hati+3hatj+hatk) and (hati-hatj+2hatk) .

Find a unit vector perpendicular to each of the vectors hati+2hatj-3hatk and hati-2hatj+hatk .

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let vec A be a vector parallel to the line of intersection of plan...

    Text Solution

    |

  2. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  3. The unit vector which is orthogonal to the vector 3hati+2hatj+6hatk an...

    Text Solution

    |

  4. The value of a so that the volume of parallelepiped formed by hat i...

    Text Solution

    |

  5. If vec a=( hat i+ hat j+ hat k), vec a. vec b=1a n d vec axx vec b= h...

    Text Solution

    |

  6. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |

  7. If veca and vecb are two unit vectors such that veca + 2vecb and 5 vec...

    Text Solution

    |

  8. Let a= 2hat(i) -2hat(k) , b=hat(i) +hat(j) and c be a vectors suc...

    Text Solution

    |

  9. If [axxb bxxc c xxa]=lambda[abc]^(2), then lambda is equal to

    Text Solution

    |

  10. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  11. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  12. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  13. The vectors vec a and vec b are not perpendicular and vec c and v...

    Text Solution

    |

  14. If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+ha...

    Text Solution

    |

  15. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  16. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  17. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  18. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  19. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  20. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |