Home
Class 12
MATHS
Let a= 2hat(i) -2hat(k) , b=hat(i) +hat...

Let `a= 2hat(i) -2hat(k) , b=hat(i) +hat(j) ` and c be a vectors such that `|c-a| =3, |(axxb)xx c|=3` and the angle between c and `axx b" is "30^(@)` . Then a. c is equal to

A

`(25)/(8)`

B

`2`

C

`5`

D

`(1)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the given conditions and use vector operations. ### Step 1: Define the vectors Given: - \( \mathbf{a} = 2\hat{i} - 2\hat{k} \) - \( \mathbf{b} = \hat{i} + \hat{j} \) ### Step 2: Calculate the modulus of vectors \( \mathbf{a} \) and \( \mathbf{b} \) 1. **Modulus of \( \mathbf{a} \)**: \[ |\mathbf{a}| = \sqrt{(2)^2 + (0)^2 + (-2)^2} = \sqrt{4 + 0 + 4} = \sqrt{8} \] 2. **Modulus of \( \mathbf{b} \)**: \[ |\mathbf{b}| = \sqrt{(1)^2 + (1)^2 + (0)^2} = \sqrt{1 + 1 + 0} = \sqrt{2} \] ### Step 3: Use the condition \( |\mathbf{c} - \mathbf{a}| = 3 \) This can be expressed as: \[ |\mathbf{c}|^2 + |\mathbf{a}|^2 - 2\mathbf{c} \cdot \mathbf{a} = 9 \] Substituting \( |\mathbf{a}|^2 = 8 \): \[ |\mathbf{c}|^2 + 8 - 2\mathbf{c} \cdot \mathbf{a} = 9 \] Thus, \[ |\mathbf{c}|^2 - 2\mathbf{c} \cdot \mathbf{a} = 1 \quad \text{(Equation 1)} \] ### Step 4: Calculate \( \mathbf{a} \times \mathbf{b} \) To find \( \mathbf{a} \times \mathbf{b} \): \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & -2 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(0 \cdot 0 - (-2) \cdot 1) - \hat{j}(2 \cdot 0 - (-2) \cdot 1) + \hat{k}(2 \cdot 1 - 0 \cdot 1) \] \[ = \hat{i}(2) - \hat{j}(2) + \hat{k}(2) = 2\hat{i} - 2\hat{j} + 2\hat{k} \] ### Step 5: Calculate the modulus of \( \mathbf{a} \times \mathbf{b} \) \[ |\mathbf{a} \times \mathbf{b}| = \sqrt{(2)^2 + (-2)^2 + (2)^2} = \sqrt{4 + 4 + 4} = \sqrt{12} \] ### Step 6: Use the condition \( |(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}| = 3 \) This can be expressed as: \[ |\mathbf{a} \times \mathbf{b}| |\mathbf{c}| \sin(30^\circ) = 3 \] Since \( \sin(30^\circ) = \frac{1}{2} \): \[ |\mathbf{c}| \cdot \sqrt{12} \cdot \frac{1}{2} = 3 \] Thus, \[ |\mathbf{c}| \cdot \frac{\sqrt{12}}{2} = 3 \implies |\mathbf{c}| = \frac{6}{\sqrt{12}} = \frac{6}{2\sqrt{3}} = \sqrt{3} \] ### Step 7: Substitute \( |\mathbf{c}| \) into Equation 1 Substituting \( |\mathbf{c}|^2 = 3 \): \[ 3 - 2\mathbf{c} \cdot \mathbf{a} = 1 \] Thus, \[ 2\mathbf{c} \cdot \mathbf{a} = 2 \implies \mathbf{c} \cdot \mathbf{a} = 1 \] ### Final Answer Thus, \( \mathbf{a} \cdot \mathbf{c} = 1 \).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let hat a , hat b , hatc be unit vectors such that hat a * hatb =hat a *hatc =0 and the angle between hat b and hat c be (pi)/(6) prove that hat a =+- 2 (hatb xx hat c )

If vec a= hat i+ hat j+ hat k and vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec a . vec c=2 and vec axx vec c= vec bdot

Let vec(a) = hat(i) - 2hat(j) + 2hat(k) and vec(b) = 2hat(i) - hat(j) + hat(k) be two vectors. If vec(c) is a vector such that vec(b) xx vec(c) = vec(b) xx vec(a) and vec(c).vec(a) = 1 , then vec(c).vec(b) is equal to :

Let hat a , hat b ,and hat c be the non-coplanar unit vectors. The angle between hat b and hat c is alpha , between hat c and hat a is beta and between hat a and hat b is gamma . If A( hat a cosalpha, 0),B( hat bcosbeta, 0) and C( hat c cosgamma, 0), then show that in triangle AB C , (|hat axx(hat bxx hat c)|)/(sinA)=(|hat bxx(hat cxx hat a)|)/(sinB)=(|hat cxx(hat axx hat b)|)/(sinC)

If vec(a)= hat(i) + hat(j) + hat(k) and vec(b)= hat(j)-hat(k) , then find vec(c ) such that vec(a ) xx vec(c )= vec(b) and vec(a).vec(c )=3 .

If vec a= hat i+ hat j+ hat ka n d vec b= hat i-2 hat j+ hat k , then find vector vec c such that vec adot vec c=2a n d vec axx vec c= vec bdot

Let vec a=x^2 hat i+2 hat j-2 hat k , vec b= hat i- hat j+ hat k and vec c=x^2 hat i+5 hat j-4 hat k be three vectors. Find the values of x for which the angle between vec a and vec b is acute and the angle between vec b and vec c is obtuse.

If vec a=7 hat i-4 hat j-4 hat k and vec b=-2 hat i- hat j+2 hat k , determine vector vec c along the internal bisector of the angle between of the angle between vectors vec a and vec b such that | vec c| =5sqrt(6)

If a=hat(i)+2hat(j)-2hat(k), b=2hat(i)-hat(j)+hat(k) and c=hat(i)+3hat(j)-hat(k) , then atimes(btimesc) is equal to

If vec a= hat i+ hat j+ hat k ,\ vec b=2 hat i- hat j+3 hat k\ a n d\ vec c= hat i-2 hat j+ hat k find a unit vector parallel to 2 vec a- vec b+3 vec c

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let vec V=2 hat i+ hat j- hat ka n d vec W= hat i+3 hat kdot If vec ...

    Text Solution

    |

  2. If veca and vecb are two unit vectors such that veca + 2vecb and 5 vec...

    Text Solution

    |

  3. Let a= 2hat(i) -2hat(k) , b=hat(i) +hat(j) and c be a vectors suc...

    Text Solution

    |

  4. If [axxb bxxc c xxa]=lambda[abc]^(2), then lambda is equal to

    Text Solution

    |

  5. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  6. Let ABCD be a parallelogram such that vec A B= vec q , vec A D= vec p...

    Text Solution

    |

  7. veca =1/sqrt(10)(3hati + hatk) and vecb =1/7(2hati +3hatj-6hatk), then...

    Text Solution

    |

  8. The vectors vec a and vec b are not perpendicular and vec c and v...

    Text Solution

    |

  9. If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+ha...

    Text Solution

    |

  10. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  11. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  12. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  13. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  14. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  15. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  16. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  17. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  18. The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-...

    Text Solution

    |

  19. If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(ve...

    Text Solution

    |

  20. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |