Home
Class 12
MATHS
If the vectors veca=hati-hatj+2hatk.vecb...

If the vectors `veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=lambdahati+hatj+muhatk` are mutually orthogonal, then `(lambda, mu)`

A

`(-3, 2)`

B

`(2,-3)`

C

`(-2, 3)`

D

`(3, -2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( \lambda \) and \( \mu \) such that the vectors \( \vec{a} \), \( \vec{b} \), and \( \vec{c} \) are mutually orthogonal. This means that the dot products \( \vec{a} \cdot \vec{b} = 0 \), \( \vec{b} \cdot \vec{c} = 0 \), and \( \vec{c} \cdot \vec{a} = 0 \). ### Step 1: Write down the vectors Given: - \( \vec{a} = \hat{i} - \hat{j} + 2\hat{k} \) - \( \vec{b} = 2\hat{i} + 4\hat{j} + \hat{k} \) - \( \vec{c} = \lambda \hat{i} + \hat{j} + \mu \hat{k} \) ### Step 2: Find \( \vec{a} \cdot \vec{c} = 0 \) Calculate the dot product: \[ \vec{a} \cdot \vec{c} = (\hat{i} - \hat{j} + 2\hat{k}) \cdot (\lambda \hat{i} + \hat{j} + \mu \hat{k}) \] \[ = 1 \cdot \lambda + (-1) \cdot 1 + 2 \cdot \mu \] \[ = \lambda - 1 + 2\mu \] Setting this equal to zero gives us: \[ \lambda + 2\mu - 1 = 0 \quad \text{(Equation 1)} \] ### Step 3: Find \( \vec{b} \cdot \vec{c} = 0 \) Calculate the dot product: \[ \vec{b} \cdot \vec{c} = (2\hat{i} + 4\hat{j} + \hat{k}) \cdot (\lambda \hat{i} + \hat{j} + \mu \hat{k}) \] \[ = 2\lambda + 4 \cdot 1 + 1 \cdot \mu \] \[ = 2\lambda + 4 + \mu \] Setting this equal to zero gives us: \[ 2\lambda + \mu + 4 = 0 \quad \text{(Equation 2)} \] ### Step 4: Solve the system of equations We now have two equations: 1. \( \lambda + 2\mu = 1 \) 2. \( 2\lambda + \mu = -4 \) From Equation 1, we can express \( \lambda \) in terms of \( \mu \): \[ \lambda = 1 - 2\mu \] Substituting this into Equation 2: \[ 2(1 - 2\mu) + \mu = -4 \] \[ 2 - 4\mu + \mu = -4 \] \[ 2 - 3\mu = -4 \] \[ -3\mu = -6 \] \[ \mu = 2 \] ### Step 5: Substitute back to find \( \lambda \) Now substitute \( \mu = 2 \) back into Equation 1: \[ \lambda + 2(2) = 1 \] \[ \lambda + 4 = 1 \] \[ \lambda = 1 - 4 = -3 \] ### Final Result Thus, the values of \( \lambda \) and \( \mu \) are: \[ (\lambda, \mu) = (-3, 2) \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If vectors veca =hati +2hatj -hatk, vecb = 2hati -hatj +hatk and vecc = lamdahati +hatj +2hatk are coplanar, then find the value of lamda .

The vectors veca=hati-2hatj+3hatk, vecb=-2hati+3hatj-4hatk and vec c=hati-3hatj+lambdahatk are coplanar if the value of lambda is

If veca=2hati-hatj+2hatk and vecb=-hati+hatj-hatk calculate veca+vecb

If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk , then vecaxxvecb is

If veca=3hati+hatj-4hatk and vecb=6hati+5hatj-2hatk find |veca Xvecb|

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

If veca=2hati+3hatj+hatk, vecb=hati-2hatj+hatk and vecc=-3hati+hatj+2hatk , then [veca vecb vecc]=

(i) Find the sum of vectors veca=hati-2hatj+hatk , vecb=-2hati+4hatj+5hatk , and vecc=hati-hatj-7hatk (ii) Find the magnitude of the vector veca=3hati-2hatj+6hatk .

Let veca=hati-hatj+hatk, vecb=2hati+hatj+hatk and vecc=hati+hatj-2hatk , then the value of [(veca, vecb, vecc)] is equal to

The vector component of vector vecA =3hati +4hatj +5hatk along vector vecB =hati +hatj +hatk is :

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. If the vectors ahat(i)+hat(j)+hat(k), hat(i)+bhat(j)+hat(k), hat(i)+ha...

    Text Solution

    |

  2. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  3. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  4. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  5. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  6. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  7. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  8. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  9. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  10. The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-...

    Text Solution

    |

  11. If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(ve...

    Text Solution

    |

  12. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  13. If vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yh...

    Text Solution

    |

  14. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  15. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  16. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat...

    Text Solution

    |

  17. If vec u , vec v and vec w are three non-coplanar vectors, then pro...

    Text Solution

    |

  18. a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then...

    Text Solution

    |

  19. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  20. Let hat u= hat i+ hat j , hat v= hat i- hat ja n d hat w= hat i+2 hat...

    Text Solution

    |