Home
Class 12
MATHS
If vecu, vecv, vecw are non -coplanar v...

If `vecu, vecv, vecw` are non -coplanar vectors and `p,q,` are real numbers then the equality
`[3vecu p vecv p vecw]-[p vecv vecw qvecu]-[2vecw-qvecv qvecu]=0` holds for

A

exactly two values of `(p, q)`

B

more than two but not all values of `(p, q)`

C

all values of (p,q)

D

exactly one value of `(p, q)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation involving the vectors \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\): \[ [3\vec{u}, p\vec{v}, p\vec{w}] - [p\vec{v}, \vec{w}, q\vec{u}] - [2\vec{w} - q\vec{v}, q\vec{u}] = 0 \] ### Step 1: Understand the notation The notation \([ \cdot, \cdot, \cdot ]\) represents the scalar triple product of the vectors. The scalar triple product \([ \vec{a}, \vec{b}, \vec{c} ]\) is defined as \(\vec{a} \cdot (\vec{b} \times \vec{c})\). ### Step 2: Rewrite the equation We can rewrite the equation using the properties of the scalar triple product. The scalar triple product is linear in each of its arguments. Thus, we can express the equation as: \[ 3[\vec{u}, \vec{v}, \vec{w}] + p[\vec{v}, \vec{w}, \vec{u}] + p[\vec{w}, \vec{u}, \vec{v}] - [p\vec{v}, \vec{w}, q\vec{u}] - [2\vec{w} - q\vec{v}, q\vec{u}] = 0 \] ### Step 3: Expand the terms Using the linearity of the scalar triple product, we can expand the terms: 1. \(3[\vec{u}, \vec{v}, \vec{w}]\) 2. \(p[\vec{v}, \vec{w}, \vec{u}]\) can be rewritten as \(p[\vec{u}, \vec{v}, \vec{w}]\) (by cyclic permutation). 3. \(p[\vec{w}, \vec{u}, \vec{v}]\) can also be rewritten as \(p[\vec{u}, \vec{v}, \vec{w}]\). 4. The term \([-p[\vec{v}, \vec{w}, \vec{u}]]\) can be rewritten as \(-p[\vec{u}, \vec{v}, \vec{w}]\). 5. The last term can be expanded as \([-2[\vec{w}, \vec{u}, \vec{v}] + q[\vec{v}, \vec{u}, \vec{w}]]\). ### Step 4: Combine like terms Now we can combine all the terms: \[ (3 + p - p - 2 + q)[\vec{u}, \vec{v}, \vec{w}] = 0 \] This simplifies to: \[ (1 + q)[\vec{u}, \vec{v}, \vec{w}] = 0 \] ### Step 5: Analyze the result Since \(\vec{u}\), \(\vec{v}\), and \(\vec{w}\) are non-coplanar vectors, the scalar triple product \([\vec{u}, \vec{v}, \vec{w}]\) cannot be zero. Therefore, we must have: \[ 1 + q = 0 \implies q = -1 \] ### Step 6: Determine values for \(p\) Now substituting \(q = -1\) back into the equation, we can analyze the quadratic equation formed. The equation simplifies to: \[ 3p^2 - p(-1) + 2(-1)^2 = 0 \implies 3p^2 + p + 2 = 0 \] ### Step 7: Solve the quadratic equation To find the values of \(p\), we can use the quadratic formula: \[ p = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 3 \cdot 2}}{2 \cdot 3} \] Calculating the discriminant: \[ 1 - 24 = -23 \] Since the discriminant is negative, there are no real solutions for \(p\). ### Conclusion Thus, the equality holds for no values of \(p\) and \(q\).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If vec u , vec v , vec w are noncoplanar vectors and p, q are real numbers, then the equality [3 vec u ,""p vec v , p vec w]-[p vec v ,"" vec w , q vec u]-[2 vec w ,""q vec v , q vec u]=0 holds for (A) exactly one value of (p, q) (B) exactly two values of (p, q) (C) more than two but not all values of (p, q) (D) all values of (p, q)

If vecu, vecv, vecw are three vectors such that [vecu vecv vecw]=1 , then 3[vecu vecv vecw]-[vecv vecw vecu]-2[vecw vecv vecu]=

vecu, vecv and vecw are three nono-coplanar unit vectors and alpha, beta and gamma are the angles between vecu and vecu, vecv and vecw and vecw and vecu , respectively and vecx , vecy and vecz are unit vectors along the bisectors of the angles alpha, beta and gamma. respectively, prove that [vecx xx vecy vecy xx vecz vecz xx vecx) = 1/16 [ vecu vecv vecw]^(2) sec^(2) alpha/2 sec^(2) beta/2 sec^(2) gamma/2 .

If veca,vecb and vecc are three non-coplanar vectors, then the vector equation vecr-(1-p-q)veca+pvecb+qvecc represents a

If vecu and vecv are unit vectors and theta is the acute angle between them, then 2 vecu xx 3vecv is a unit vector for

If vecu and vecv are unit vectors and theta is the acute angle between them, then 2 vecu xx 3vecv is a unit vector for

If vecu,vecv and vecw are three non coplanar vectors then (vecu+vecv-vecw).(vecu-vecv)xx(vecv-vecw) equals (A) vecu.(vecvxxvecw) (B) vecu.vecwxxvecv (C) 2vecu.(vecvxxvecw) (D) 0

If veca,vecb,vecc are non-coplanar vectors and vecu and vecv are any two vectors. Prove that vecuxxvecv=(1)/([vecavecbvecc])|{:(vecu.veca,vecv.veca,veca),(vecu.vecb,vecv.vecb,vecb),(vecu.vecc,vecv.vecc,vecc):}|

If vecu and vecv are unit vectors and theta is the acute angle between them, then 2 uvecu xx 3vecv is a unit vector for

Let vecu and vecv be unit vectors such that vecu xx vecv + vecu = vecw and vecw xx vecu = vecv . Find the value of [vecu vecv vecw ]

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  2. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  3. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  4. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  5. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  6. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  7. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  8. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  9. The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-...

    Text Solution

    |

  10. If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(ve...

    Text Solution

    |

  11. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  12. If vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yh...

    Text Solution

    |

  13. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  14. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  15. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat...

    Text Solution

    |

  16. If vec u , vec v and vec w are three non-coplanar vectors, then pro...

    Text Solution

    |

  17. a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then...

    Text Solution

    |

  18. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  19. Let hat u= hat i+ hat j , hat v= hat i- hat ja n d hat w= hat i+2 hat...

    Text Solution

    |

  20. Given, two vectors are hat(i)-hat(j) and hat(i)+2hat(j), the unit vect...

    Text Solution

    |