Home
Class 12
MATHS
The vector vec a=""alpha hat i+2 hat...

The vector ` vec a=""alpha hat i+2 hat j+""beta hat k` lies in the plane of the vectors ` vec b="" hat"i"+ hat j` and ` vec c= hat j+ hat k` and bisects the angle between ` vec b` and ` vec c` . Then which one of the following gives possible values of `alpha"and"beta` ? (1) `alpha=""2,beta=""2` (2) `alpha=""1,beta=""2` (3) `alpha=""2,beta=""1` (4) `alpha=""1,beta=""1`

A

`alpha=1, beta=1`

B

`alpha=2, beta=2`

C

`alpha=1, beta=2`

D

`alpha=2, beta=1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning and calculations as given in the video transcript. ### Step 1: Define the given vectors We have the following vectors: - \( \vec{a} = \alpha \hat{i} + 2 \hat{j} + \beta \hat{k} \) - \( \vec{b} = \hat{i} + \hat{j} \) - \( \vec{c} = \hat{j} + \hat{k} \) ### Step 2: Find the unit vectors of \( \vec{b} \) and \( \vec{c} \) To find the unit vectors, we first calculate the magnitudes of \( \vec{b} \) and \( \vec{c} \). 1. Magnitude of \( \vec{b} \): \[ |\vec{b}| = \sqrt{1^2 + 1^2} = \sqrt{2} \] Thus, the unit vector \( \hat{b} \) is: \[ \hat{b} = \frac{\vec{b}}{|\vec{b}|} = \frac{\hat{i} + \hat{j}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} \] 2. Magnitude of \( \vec{c} \): \[ |\vec{c}| = \sqrt{0^2 + 1^2 + 1^2} = \sqrt{2} \] Thus, the unit vector \( \hat{c} \) is: \[ \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{\hat{j} + \hat{k}}{\sqrt{2}} = \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \] ### Step 3: Use the angle bisector formula The angle bisector \( \vec{r} \) can be expressed as: \[ \vec{r} = \lambda \hat{b} + \lambda \hat{c} \] Substituting the unit vectors: \[ \vec{r} = \lambda \left( \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} \right) + \lambda \left( \frac{1}{\sqrt{2}} \hat{j} + \frac{1}{\sqrt{2}} \hat{k} \right) \] Combining terms: \[ \vec{r} = \frac{\lambda}{\sqrt{2}} \hat{i} + \left( \frac{\lambda}{\sqrt{2}} + \frac{\lambda}{\sqrt{2}} \right) \hat{j} + \frac{\lambda}{\sqrt{2}} \hat{k} \] This simplifies to: \[ \vec{r} = \frac{\lambda}{\sqrt{2}} \hat{i} + \frac{2\lambda}{\sqrt{2}} \hat{j} + \frac{\lambda}{\sqrt{2}} \hat{k} \] ### Step 4: Set \( \vec{r} \) equal to \( \vec{a} \) Since \( \vec{a} \) lies in the same plane: \[ \alpha \hat{i} + 2 \hat{j} + \beta \hat{k} = \frac{\lambda}{\sqrt{2}} \hat{i} + \frac{2\lambda}{\sqrt{2}} \hat{j} + \frac{\lambda}{\sqrt{2}} \hat{k} \] ### Step 5: Compare coefficients From the equation, we can compare coefficients: 1. For \( \hat{i} \): \[ \alpha = \frac{\lambda}{\sqrt{2}} \] 2. For \( \hat{j} \): \[ 2 = \frac{2\lambda}{\sqrt{2}} \implies \lambda = \sqrt{2} \] 3. For \( \hat{k} \): \[ \beta = \frac{\lambda}{\sqrt{2}} = \frac{\sqrt{2}}{\sqrt{2}} = 1 \] ### Step 6: Substitute \( \lambda \) back to find \( \alpha \) Substituting \( \lambda \): \[ \alpha = \frac{\sqrt{2}}{\sqrt{2}} = 1 \] ### Conclusion Thus, the values of \( \alpha \) and \( \beta \) are: \[ \alpha = 1, \quad \beta = 1 \] The correct option is (4) \( \alpha = 1, \beta = 1 \). ---
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the projection of the vector vec a=2 hat i+3 hat j+2 hat k on the vector vec b=2 hat i+2 hat j+ hat k .

Find the sum of the following vectors vec a= hat i-2 hat j ,\ vec b=2 hat i-3 hat j ,\ vec c=2 hat i+3 hat kdot

Find the unit vector in the direction of the sum of the vectors, vec a=2 hat i+2 hat j-5 hat k and vec b=2 hat i+ hat j+3 hat k .

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

Find the angle between the vectors vec a\ a n d\ vec b where: vec a= hat i+2 hat j- hat k ,\ vec b= hat i- hat j+ hat k

If vec a= hat i+ hat j , vec b= hat j+ hat k , vec c= hat k+ hat i find the unit vector in the direction of vec a+ vec b+ vec cdot

If vectors vec a=2 hat i+2 hat j+3 hat k ,\ vec b=- hat i+2 hat j+ hat k and vec c=3 hat i+ hat j are such that vec a+lambda\ vec b is perpendicular to vec c , then find the value of lambda

If vec a=3 hat i- hat j-4 hat k , vec b=2 hat i+4 hat j-3 hat k and vec c= hat i+2 hat j- hat k , find |3 vec a-2 hat b+4 hat c|dot

The number of unit vectors perpendicular to the vector vec(a) = 2 hat(i) + hat(j) + 2 hat(k) and vec(b) = hat(j) + hat(k) is

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  2. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  3. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  4. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  5. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  6. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  7. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  8. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  9. The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-...

    Text Solution

    |

  10. If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(ve...

    Text Solution

    |

  11. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  12. If vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yh...

    Text Solution

    |

  13. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  14. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  15. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat...

    Text Solution

    |

  16. If vec u , vec v and vec w are three non-coplanar vectors, then pro...

    Text Solution

    |

  17. a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then...

    Text Solution

    |

  18. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  19. Let hat u= hat i+ hat j , hat v= hat i- hat ja n d hat w= hat i+2 hat...

    Text Solution

    |

  20. Given, two vectors are hat(i)-hat(j) and hat(i)+2hat(j), the unit vect...

    Text Solution

    |