Home
Class 12
MATHS
If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc)...

If `(vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc` and any three vectors such that `veca.vecb=0,vecb.vecc=0,` then `veca` and `vecc` are

A

inclined at an angle of `(pi)/(6)` between them

B

perpendicular

C

parallel

D

inclined at an angle `(pi)/(3)` between them

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given vector equation and the conditions provided. The equation we have is: \[ (\vec{a} \times \vec{b}) \times \vec{c} = \vec{a} \times (\vec{b} \times \vec{c}) \] We also know the following conditions: 1. \(\vec{a} \cdot \vec{b} = 0\) (which means \(\vec{a}\) is perpendicular to \(\vec{b}\)) 2. \(\vec{b} \cdot \vec{c} = 0\) (which means \(\vec{b}\) is perpendicular to \(\vec{c}\)) ### Step 1: Apply the Vector Triple Product Identity Using the vector triple product identity, we can rewrite both sides of the equation: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Applying this to both sides: - Left-hand side: \[ (\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} \] - Right-hand side: \[ \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{b} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 2: Set the Two Sides Equal Now, we set the two results equal to each other: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a} = (\vec{b} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 3: Simplify the Equation Rearranging the equation gives us: \[ (\vec{a} \cdot \vec{c}) \vec{b} = 2(\vec{b} \cdot \vec{c}) \vec{a} + (\vec{a} \cdot \vec{b}) \vec{c} \] ### Step 4: Analyze the Conditions Since \(\vec{a} \cdot \vec{b} = 0\) and \(\vec{b} \cdot \vec{c} = 0\), we can substitute these values into our equation: \[ (\vec{a} \cdot \vec{c}) \vec{b} = 0 \] This implies that either \(\vec{b} = 0\) (which is not the case as it is a vector) or \(\vec{a} \cdot \vec{c} = 0\). Therefore, \(\vec{a}\) is perpendicular to \(\vec{c}\). ### Step 5: Conclusion Since we have established that \(\vec{a} \cdot \vec{c} = 0\), we conclude that \(\vec{a}\) and \(\vec{c}\) are perpendicular to each other. ### Final Answer Thus, the answer to the question is that \(\vec{a}\) and \(\vec{c}\) are **perpendicular**. ---
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), where veca,vecb,vecc are any three vectors such that veca.vecb!=0,vecb.vecc!=0 , then veca and vecc are (A) inclined at an angle pi/3 to each other (B) inclined at an angle of pi/6 to each other (C) perpendicular (D) parallel

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If vecaxxvecb=vecc,vecb xx vecc=veca, where vecc != vec0, then

If vecaxx(vecaxxvecb)=vecbxx(vecbxxvecc) and veca.vecb!=0 , then [(veca,vecb,vecc)]=

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca,vecb,vecc be three vectors such that [veca vecb vec c]=4 then [vecaxxvecb vecbxxvecc veccxxveca] is equal to

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  2. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  3. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  4. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  5. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  6. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  7. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  8. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  9. The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-...

    Text Solution

    |

  10. If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(ve...

    Text Solution

    |

  11. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  12. If vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yh...

    Text Solution

    |

  13. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  14. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  15. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat...

    Text Solution

    |

  16. If vec u , vec v and vec w are three non-coplanar vectors, then pro...

    Text Solution

    |

  17. a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then...

    Text Solution

    |

  18. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  19. Let hat u= hat i+ hat j , hat v= hat i- hat ja n d hat w= hat i+2 hat...

    Text Solution

    |

  20. Given, two vectors are hat(i)-hat(j) and hat(i)+2hat(j), the unit vect...

    Text Solution

    |