Home
Class 12
MATHS
If veca is any vector, then (vec a xx ...

If `veca` is any vector, then `(vec a xx vec i)^2+(vec a xx vecj)^2+(veca xx vec k)^2` is equal to

A

`4a^(2)`

B

`2a^(2)`

C

`a^(2)`

D

`3a^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ (\vec{a} \times \vec{i})^2 + (\vec{a} \times \vec{j})^2 + (\vec{a} \times \vec{k})^2 \] where \(\vec{a}\) is any vector expressed in terms of its components along the unit vectors \(\vec{i}\), \(\vec{j}\), and \(\vec{k}\). ### Step 1: Express the vector \(\vec{a}\) Let \(\vec{a} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}\). ### Step 2: Calculate \(\vec{a} \times \vec{i}\) Using the properties of the cross product: \[ \vec{a} \times \vec{i} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times \vec{i} \] The cross product of \(\vec{i}\) with itself is zero, and using the right-hand rule: \[ = a_2 (\vec{j} \times \vec{i}) + a_3 (\vec{k} \times \vec{i}) = a_2 (-\vec{k}) + a_3 \vec{j} = -a_2 \vec{k} + a_3 \vec{j} \] ### Step 3: Calculate \((\vec{a} \times \vec{i})^2\) Now we find the magnitude squared: \[ |\vec{a} \times \vec{i}|^2 = (-a_2 \vec{k} + a_3 \vec{j}) \cdot (-a_2 \vec{k} + a_3 \vec{j}) = a_2^2 + a_3^2 \] ### Step 4: Calculate \(\vec{a} \times \vec{j}\) Next, we calculate \(\vec{a} \times \vec{j}\): \[ \vec{a} \times \vec{j} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times \vec{j} \] Using the properties of the cross product: \[ = a_1 (\vec{i} \times \vec{j}) + a_3 (\vec{k} \times \vec{j}) = a_1 \vec{k} - a_3 \vec{i} \] ### Step 5: Calculate \((\vec{a} \times \vec{j})^2\) Now we find the magnitude squared: \[ |\vec{a} \times \vec{j}|^2 = (a_1 \vec{k} - a_3 \vec{i}) \cdot (a_1 \vec{k} - a_3 \vec{i}) = a_1^2 + a_3^2 \] ### Step 6: Calculate \(\vec{a} \times \vec{k}\) Now we calculate \(\vec{a} \times \vec{k}\): \[ \vec{a} \times \vec{k} = (a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k}) \times \vec{k} \] Using the properties of the cross product: \[ = a_1 (\vec{i} \times \vec{k}) + a_2 (\vec{j} \times \vec{k}) = -a_1 \vec{j} + a_2 \vec{i} \] ### Step 7: Calculate \((\vec{a} \times \vec{k})^2\) Now we find the magnitude squared: \[ |\vec{a} \times \vec{k}|^2 = (-a_1 \vec{j} + a_2 \vec{i}) \cdot (-a_1 \vec{j} + a_2 \vec{i}) = a_1^2 + a_2^2 \] ### Step 8: Combine all results Now we can combine all the results: \[ (\vec{a} \times \vec{i})^2 + (\vec{a} \times \vec{j})^2 + (\vec{a} \times \vec{k})^2 = (a_2^2 + a_3^2) + (a_1^2 + a_3^2) + (a_1^2 + a_2^2) \] This simplifies to: \[ = 2a_1^2 + 2a_2^2 + 2a_3^2 = 2(a_1^2 + a_2^2 + a_3^2) \] ### Final Result Thus, the final expression is: \[ (\vec{a} \times \vec{i})^2 + (\vec{a} \times \vec{j})^2 + (\vec{a} \times \vec{k})^2 = 2|\vec{a}|^2 \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If 4 vec a+5 vec b+9 vec c=0, then ( vec axx vec b)xx[( vec bxx vec c)xx( vec cxx vec a)] is equal to a vector perpendicular to the plane of a ,b ,c b. a scalar quantity c. vec0 d. none of these

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

If vec a+vec b+vec c=0 , prove that (vec a xx vec b)=(vec b xx vec c)=(vec c xx vec a)

Show that ( vec a- vec b)xx( vec a+ vec b)=2( vec axx vec b)dot

If veca + 2 vecb + 3 vecc = vec0 " then " veca xx vecb + vecb xx vecc + vecc xx veca=

Let veca,vecb and vecc be three vectors such that |veca |=sqrt(3),|vec b|=5 , vec b .vec c = 10 and the angle between vec b and vec c is pi/3, if vec a is perpendicular to the vector vec b xx vec c, then | veca xx (vecbxxvecc)| is equal to __________.

Let vec a , vec ba n d vec c be three non-coplanar vecrors and vec r be any arbitrary vector. Then ( vec axx vec b)xx( vec rxx vec c)+( vec bxx vec c)xx( vec rxx vec a)+( vec cxx vec a)xx( vec rxx vec b) is always equal to [ vec a vec b vec c] vec r b. 2[ vec a vec b vec c] vec r c. 3[ vec a vec b vec c] vec r d. none of these

Let vec r xx veca = vec b xx veca and vecc vecr=0 , where veca.vecc ne 0 , then veca.vecc(vecr xx vecb)+(vecb.vecc)(veca xx vecr) is equal to __________.

For any two vectors vec a and vec b , prove that (vec a xx vec b )^2= |vec a |^2 |vec b|^2 -(vec a. vec b)^2

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  2. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  3. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  4. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  5. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  6. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  7. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  8. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  9. The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-...

    Text Solution

    |

  10. If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(ve...

    Text Solution

    |

  11. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  12. If vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yh...

    Text Solution

    |

  13. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  14. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  15. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat...

    Text Solution

    |

  16. If vec u , vec v and vec w are three non-coplanar vectors, then pro...

    Text Solution

    |

  17. a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then...

    Text Solution

    |

  18. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  19. Let hat u= hat i+ hat j , hat v= hat i- hat ja n d hat w= hat i+2 hat...

    Text Solution

    |

  20. Given, two vectors are hat(i)-hat(j) and hat(i)+2hat(j), the unit vect...

    Text Solution

    |