Home
Class 12
MATHS
If vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+...

If `vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k)`
`vec(c)=yhat(i)+xhat(j)+(1+x-y)hat(k)`.
then `vec(a).(vec(b) xx vec (c))` depends on

A

neither x nor y

B

both x and y

C

only x

D

only y

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\vec{a} \cdot (\vec{b} \times \vec{c})\) where: \[ \vec{a} = \hat{i} - \hat{k} \] \[ \vec{b} = x\hat{i} + \hat{j} + (1-x)\hat{k} \] \[ \vec{c} = y\hat{i} + x\hat{j} + (1+x-y)\hat{k} \] ### Step 1: Calculate \(\vec{b} \times \vec{c}\) To calculate the cross product \(\vec{b} \times \vec{c}\), we can use the determinant of a matrix formed by the unit vectors \(\hat{i}, \hat{j}, \hat{k}\) and the components of \(\vec{b}\) and \(\vec{c}\): \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ x & 1 & 1-x \\ y & x & 1+x-y \end{vmatrix} \] ### Step 2: Calculate the determinant Expanding the determinant, we have: \[ \vec{b} \times \vec{c} = \hat{i} \begin{vmatrix} 1 & 1-x \\ x & 1+x-y \end{vmatrix} - \hat{j} \begin{vmatrix} x & 1-x \\ y & 1+x-y \end{vmatrix} + \hat{k} \begin{vmatrix} x & 1 \\ y & x \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For \(\hat{i}\): \[ \begin{vmatrix} 1 & 1-x \\ x & 1+x-y \end{vmatrix} = 1(1+x-y) - (1-x)x = 1 + x - y - x + x^2 = x^2 + 1 - y \] 2. For \(-\hat{j}\): \[ \begin{vmatrix} x & 1-x \\ y & 1+x-y \end{vmatrix} = x(1+x-y) - (1-x)y = x + x^2 - xy - y + xy = x + x^2 - y \] 3. For \(\hat{k}\): \[ \begin{vmatrix} x & 1 \\ y & x \end{vmatrix} = x^2 - y \] Putting it all together, we have: \[ \vec{b} \times \vec{c} = (x^2 + 1 - y)\hat{i} - (x + x^2 - y)\hat{j} + (x^2 - y)\hat{k} \] ### Step 3: Calculate \(\vec{a} \cdot (\vec{b} \times \vec{c})\) Now we compute the dot product \(\vec{a} \cdot (\vec{b} \times \vec{c})\): \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = (\hat{i} - \hat{k}) \cdot \left((x^2 + 1 - y)\hat{i} - (x + x^2 - y)\hat{j} + (x^2 - y)\hat{k}\right) \] Calculating this gives: \[ = (x^2 + 1 - y) - (x^2 - y) = 1 \] ### Final Result Thus, the value of \(\vec{a} \cdot (\vec{b} \times \vec{c})\) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let vec a= hat i- hat k , vec b=x hat i+ hat j+(1-x) hat k and vec c=y hat i+x hat j+(1+x-y)hat k . Then [ vec a vec b vec c] depends on

If vec(a)= 3hat(i) + hat(j) + 2hat(k) and vec(b)= 2hat(i)-2hat(j) + 4hat(k) , then the magnitude of vec(b) xx vec(a) is

If vec(a) = 2 hat(i) - hat(j) + hat(k) and vec(b) = hat(i) - 2 hat(j) + hat(k) then projection of vec(b)' on ' vec(a) is

If vec(a) . hat(i)= vec(a).(hat(i)+ hat(j)) = vec(a). ( hat(i) + hat(j) + hat(k)) =1 , then vec(a) is equal to

If vec(a) = 2 hat(i) + hat(j) + 2hat(k) and vec(b) = 5hat(i)- 3 hat(j) + hat(k) , then the projection of vec(b) on vec(a) is

If vec(a) = hat(i) + hat(j) + 2 hat(k) , vec(b) = 2 hat(j) + hat(k) and vec (c) = hat(i) + hat(j) + hat(k) . Find a unit vector perpendicular to the plane containing vec(a), vec(b), vec(c)

If vec(a) = 2hat(i) + hat(j) - hat(k) and vec(b) = hat(i) - hat(k) , then projection of vec(a) on vec(b) will be :

If vec(a) = hat(i) - 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) - 3 hat(j) + 5 hat(k) , then angle between vec(a) and vec(b) is

If vec(A)=-hat(i)+3hat(j)+2hat(k) and vec(B)=3hat(i)+2hat(j)+2hat(k) then find the value of vec(A) times vec(B) .

If vec(A)=2hat(i)+3hat(j)-hat(k) and vec(B)=-hat(i)+3hat(j)+4hat(k) , then find the projection of vec(A) on vec(B) .

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  2. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  3. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  4. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  5. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  6. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  7. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  8. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  9. The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-...

    Text Solution

    |

  10. If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(ve...

    Text Solution

    |

  11. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  12. If vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yh...

    Text Solution

    |

  13. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  14. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  15. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat...

    Text Solution

    |

  16. If vec u , vec v and vec w are three non-coplanar vectors, then pro...

    Text Solution

    |

  17. a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then...

    Text Solution

    |

  18. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  19. Let hat u= hat i+ hat j , hat v= hat i- hat ja n d hat w= hat i+2 hat...

    Text Solution

    |

  20. Given, two vectors are hat(i)-hat(j) and hat(i)+2hat(j), the unit vect...

    Text Solution

    |