Home
Class 12
MATHS
Let vec u , vec va n d vec w be such th...

Let ` vec u , vec va n d vec w` be such that `| vec u|=1,| vec v|=2a n d| vec w|=3.` If the projection of ` vec v` along ` vec u` is equal to that of ` vec w` along ` vec u` and vectors ` vec va n d vec w` are perpendicular to each other, then `| vec u- vec v+ vec w|` equals `2` b. `sqrt(7)` c. `sqrt(14)` d. `14`

A

`2`

B

`sqrt(7)`

C

`sqrt(14)`

D

`14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will analyze the given information and apply the relevant mathematical concepts. ### Step 1: Understand the Given Information We have three vectors: - \( \vec{u} \) with magnitude \( |\vec{u}| = 1 \) - \( \vec{v} \) with magnitude \( |\vec{v}| = 2 \) - \( \vec{w} \) with magnitude \( |\vec{w}| = 3 \) We know: 1. The projection of \( \vec{v} \) along \( \vec{u} \) is equal to the projection of \( \vec{w} \) along \( \vec{u} \). 2. Vectors \( \vec{v} \) and \( \vec{w} \) are perpendicular to each other. ### Step 2: Set Up the Projection Equations The projection of a vector \( \vec{a} \) along another vector \( \vec{b} \) is given by: \[ \text{Projection of } \vec{a} \text{ along } \vec{b} = \frac{\vec{a} \cdot \vec{b}}{|\vec{b}|} \] For our vectors: - Projection of \( \vec{v} \) along \( \vec{u} \): \[ \text{Proj}_{\vec{u}} \vec{v} = \frac{\vec{v} \cdot \vec{u}}{|\vec{u}|} = \vec{v} \cdot \vec{u} \quad (\text{since } |\vec{u}| = 1) \] - Projection of \( \vec{w} \) along \( \vec{u} \): \[ \text{Proj}_{\vec{u}} \vec{w} = \frac{\vec{w} \cdot \vec{u}}{|\vec{u}|} = \vec{w} \cdot \vec{u} \quad (\text{since } |\vec{u}| = 1) \] ### Step 3: Set the Projections Equal Since the projections are equal: \[ \vec{v} \cdot \vec{u} = \vec{w} \cdot \vec{u} \] ### Step 4: Use the Perpendicular Condition Since \( \vec{v} \) and \( \vec{w} \) are perpendicular: \[ \vec{v} \cdot \vec{w} = 0 \] ### Step 5: Calculate the Magnitude of \( |\vec{u} - \vec{v} + \vec{w}| \) We need to find: \[ |\vec{u} - \vec{v} + \vec{w}| \] Using the formula for the magnitude of a vector: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}) \] Let \( \vec{a} = \vec{u}, \vec{b} = -\vec{v}, \vec{c} = \vec{w} \): \[ |\vec{u} - \vec{v} + \vec{w}|^2 = |\vec{u}|^2 + |\vec{v}|^2 + |\vec{w}|^2 + 2(\vec{u} \cdot (-\vec{v}) + (-\vec{v}) \cdot \vec{w} + \vec{w} \cdot \vec{u}) \] ### Step 6: Substitute the Magnitudes and Dot Products Substituting the known magnitudes: - \( |\vec{u}|^2 = 1^2 = 1 \) - \( |\vec{v}|^2 = 2^2 = 4 \) - \( |\vec{w}|^2 = 3^2 = 9 \) Thus: \[ |\vec{u} - \vec{v} + \vec{w}|^2 = 1 + 4 + 9 + 2(-\vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{w} + \vec{w} \cdot \vec{u}) \] ### Step 7: Simplify the Expression Since \( \vec{v} \cdot \vec{w} = 0 \) (perpendicularity): \[ |\vec{u} - \vec{v} + \vec{w}|^2 = 14 + 2(-\vec{u} \cdot \vec{v} + \vec{w} \cdot \vec{u}) \] ### Step 8: Recognize Equal Projections From \( \vec{v} \cdot \vec{u} = \vec{w} \cdot \vec{u} \), we can denote \( \vec{u} \cdot \vec{v} = \vec{u} \cdot \vec{w} = k \): \[ |\vec{u} - \vec{v} + \vec{w}|^2 = 14 + 2(-k + k) = 14 \] ### Step 9: Final Calculation Thus: \[ |\vec{u} - \vec{v} + \vec{w}|^2 = 14 \implies |\vec{u} - \vec{v} + \vec{w}| = \sqrt{14} \] ### Conclusion The magnitude \( |\vec{u} - \vec{v} + \vec{w}| \) equals \( \sqrt{14} \).
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

Let vec a , vec b , vec c be three vectors such that | vec a|=1,| vec b|=2a n d| vec c|=3. If the projection of vec b along a is equal to the projection of vec c along vec aa n d vec b , vec c are perpendicular to each other, find |3 vec a-2 vec b+2 vec c|dot

If vec a\ a n d\ vec b are two vectors such that vec adot vec b=6,\ | vec a|=3\ a n d\ | vec b|=4. Write the projection of vec a\ on\ vec bdot

Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= vec0 . If | vec u|=3,| vec v|=4 and | vec w|=5, then find vec u . vec v+ vec v . vec w+ vec w . vec u .

Let vec u ,\ vec v\ a n d\ vec w be vector such vec u+ vec v+ vec w=0.\ if | vec u|=3,\ | vec v|=4\ a n d\ | vec w|=5, then find vec udot vec vdot+ vec vdot vec w+ vec wdot vec udot

For any vector vec a\ a n d\ vec b prove that | vec a+ vec b|lt=| vec a|+| vec b|dot

If vec a and vec b are two vectors such that | vec a|=2, |vecb|=3 and ( vec a . vec b )=4 then \ f i n d |( vec a - vec b )|

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

Let vec u , vec v and vec w be vectors such that vec u+ vec v+ vec w=0. If | vec u|=3,| vec v|=4 and | vec w|=5, then vec u. vec v+ vec v.vec w+ vec w.vec u is a. 47 b. -25 c. 0 d. 25

Vectors vec a\ a n d\ vec b are such that | vec a|=3,\ | vec b|=2/3a n d\ ( vec axx vec b) is a unit vector. Write the angle between vec a\ a n d\ vec bdot

If vec a+2"" vec b+3"" vec c="" vec0 and |"" vec a|=6,|"" vec b|=3a n d|"" vec c|=2 , then angle between vec aa n d"" vec b is

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  2. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  3. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  4. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  5. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  6. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  7. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  8. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  9. The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-...

    Text Solution

    |

  10. If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(ve...

    Text Solution

    |

  11. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  12. If vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yh...

    Text Solution

    |

  13. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  14. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  15. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat...

    Text Solution

    |

  16. If vec u , vec v and vec w are three non-coplanar vectors, then pro...

    Text Solution

    |

  17. a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then...

    Text Solution

    |

  18. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  19. Let hat u= hat i+ hat j , hat v= hat i- hat ja n d hat w= hat i+2 hat...

    Text Solution

    |

  20. Given, two vectors are hat(i)-hat(j) and hat(i)+2hat(j), the unit vect...

    Text Solution

    |