Home
Class 12
MATHS
Let vec(a) , vec(b) and vec(c) be three ...

Let `vec(a)` , `vec(b)` and `vec(c)` be three non-zero vectors such that no two of them are collinear and `(vec(a)×vec(b))×vec(c)=1/3|vec(b)||vec(c)|vec(a)`. If `theta` is the angle between vectors `vec(b)` and `vec(c)`, then the value of `sintheta` is:

A

`(1)/(3)`

B

`(sqrt(2))/(3)`

C

`(2)/(3)`

D

`(2sqrt(2))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of vectors and the triple product. **Given:** \[ (\vec{a} \times \vec{b}) \times \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a} \] **Step 1: Apply the triple product identity** Using the vector triple product identity, we have: \[ \vec{x} \times (\vec{y} \times \vec{z}) = (\vec{x} \cdot \vec{z}) \vec{y} - (\vec{x} \cdot \vec{y}) \vec{z} \] Let \(\vec{x} = \vec{a}\), \(\vec{y} = \vec{b}\), and \(\vec{z} = \vec{c}\). Thus, \[ (\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} \] **Step 2: Set the equation** From the given equation, we can equate: \[ (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a} \] **Step 3: Rearranging the equation** Rearranging gives us: \[ (\vec{a} \cdot \vec{c}) \vec{b} = \frac{1}{3} |\vec{b}| |\vec{c}| \vec{a} + (\vec{a} \cdot \vec{b}) \vec{c} \] **Step 4: Dot product considerations** Taking the dot product of both sides with \(\vec{a}\): \[ \vec{a} \cdot \left((\vec{a} \cdot \vec{c}) \vec{b}\right) = \vec{a} \cdot \left(\frac{1}{3} |\vec{b}| |\vec{c}| \vec{a} + (\vec{a} \cdot \vec{b}) \vec{c}\right) \] This simplifies to: \[ (\vec{a} \cdot \vec{c})(\vec{a} \cdot \vec{b}) = \frac{1}{3} |\vec{b}| |\vec{c}| |\vec{a}|^2 + (\vec{a} \cdot \vec{b})(\vec{a} \cdot \vec{c}) \] **Step 5: Canceling terms** Now, we can cancel the \((\vec{a} \cdot \vec{c})(\vec{a} \cdot \vec{b})\) from both sides: \[ 0 = \frac{1}{3} |\vec{b}| |\vec{c}| |\vec{a}|^2 \] This implies that: \[ \vec{a} \cdot \vec{c} = 0 \] Thus, \(\vec{a}\) and \(\vec{c}\) are orthogonal. **Step 6: Finding \(\cos \theta\)** Next, we know that: \[ \vec{b} \cdot \vec{c} = |\vec{b}| |\vec{c}| \cos \theta \] From our earlier steps, we can substitute: \[ - \vec{b} \cdot \vec{c} = \frac{1}{3} |\vec{b}| |\vec{c}| |\vec{a}| \] Thus: \[ \cos \theta = -\frac{1}{3} \] **Step 7: Finding \(\sin \theta\)** Using the identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \(\cos \theta\): \[ \sin^2 \theta + \left(-\frac{1}{3}\right)^2 = 1 \] \[ \sin^2 \theta + \frac{1}{9} = 1 \] \[ \sin^2 \theta = 1 - \frac{1}{9} = \frac{8}{9} \] Thus: \[ \sin \theta = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3} \] **Final Answer:** \[ \sin \theta = \frac{2\sqrt{2}}{3} \]
Promotional Banner

Topper's Solved these Questions

  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|17 Videos
  • PROBABILITY

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|54 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos

Similar Questions

Explore conceptually related problems

If vec a , vec b , and vec c be non-zero vectors such that no two are collinear or ( vec axx vec b)xx vec c=1/3| vec b|| vec c| vec adot If theta is the acute angle between vectors vec b and vecc , then find the value of sin thetadot

Let vec a , vec b, vec c be three non-zero vectors such that any two of them are non-collinear. If vec a+2 vec b is collinear with vec ca n d vec b+3 vec c is collinear with vec a then prove that vec a+2 vec b+6 vec c= vec0

If vec(a) , vec( b) and vec( c ) are unit vectors such that vec(a) + vec(b) + vec( c) = 0 , then the values of vec(a). vec(b)+ vec(b) . vec( c )+ vec( c) .vec(a) is

If vec a , vec b, vec c are three non- null vectors such that any two of them are non-collinear. If vec a+ vec b is collinear with vec ca n d vec b+ vec c is collinear with vec a , then find vec a+ vec b+ vecc

If vec a , vec b and vec c are three non-zero vectors, no two of which are collinear, vec a+2 vec b is collinear with vec c and vec b+3 vec c is collinear with vec a , then find the value of | vec a+2 vec b+6 vec c| .

If vec(a), vec(b) and vec(c) are three vectors such that vec(a) times vec(b)=vec(c) and vec(b) times vec(c)=vec(a)," prove that "vec(a), vec(b), vec(c) are mutually perpendicular and abs(vec(b))=1 and abs(vec(c))=abs(vec(a)) .

vec(A) and vec(B) are two Vectors and theta is the angle between them, if |vec(A)xxvec(B)|= sqrt(3)(vec(A).vec(B)) the value of theta is

If | vec a|+| vec b|=| vec c| and vec a+ vec b= vec c , then find the angle between vec a and vec bdot

For three non-zero vectors vec(a),\vec(b) " and"vec(c ) , prove that [(vec(a)-vec(b))\ \ (vec(b)-vec(c))\ \ (vec(c )-vec(a))]=0

Let vec a , vec b and vec c be three non-zero vectors such that vec a+ vec b+ vec c=0 and lambda vec bxx vec a+ vec bxx vec c+ vec cxx vec a=0, then find the value of lambda

ARIHANT MATHS ENGLISH-PRODUCT OF VECTORS-Exercise (Questions Asked In Previous 13 Years Exam)
  1. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  2. If the vectors veca=hati-hatj+2hatk.vecb=2hati+4hatj+hatk and veccc=la...

    Text Solution

    |

  3. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  4. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  5. If vecu and vecv are unit vectors and theta is the acute angle bet...

    Text Solution

    |

  6. Let bar a= hat i+ hat j+ hat k ,""b= hat i- hat j+2 hat k and bar...

    Text Solution

    |

  7. If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc), Where veca, vecb and vecc a...

    Text Solution

    |

  8. The values of a for which the points A, B, and C with position vectors...

    Text Solution

    |

  9. The distance between the line r=2hat(i)-2hat(j)+3hat(k)+lambda(hat(i)-...

    Text Solution

    |

  10. If veca is any vector, then (vec a xx vec i)^2+(vec a xx vecj)^2+(ve...

    Text Solution

    |

  11. If veca,vecb,vecc are non-coplanar vectors and lambda is a real number...

    Text Solution

    |

  12. If vec(a)=hat(i)-hat(k), vec(b)=xhat(i)+hat(j)+(1-x)hat(k) vec(c)=yh...

    Text Solution

    |

  13. Let vec u , vec va n d vec w be such that | vec u|=1,| vec v|=2a n d|...

    Text Solution

    |

  14. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  15. A particle acted by constant forces 4 hat i+ hat j-3 hat k and 3 hat...

    Text Solution

    |

  16. If vec u , vec v and vec w are three non-coplanar vectors, then pro...

    Text Solution

    |

  17. a, b, c are three vectors, such that a+b+c=0 |a|=1, |b|=2, |c|=3, then...

    Text Solution

    |

  18. A tetrahedron has vertices O (0,0,0), A(1,2,1,), B(2,1,3) and C(-1,1,2...

    Text Solution

    |

  19. Let hat u= hat i+ hat j , hat v= hat i- hat ja n d hat w= hat i+2 hat...

    Text Solution

    |

  20. Given, two vectors are hat(i)-hat(j) and hat(i)+2hat(j), the unit vect...

    Text Solution

    |