Home
Class 12
MATHS
If A=[{:(3,-2),(4,-2):}], find x such th...

If `A=[{:(3,-2),(4,-2):}]`, find x such that `A^(2)=xA - 2I`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x \) such that: \[ A^2 = xA - 2I \] where \( A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} \) and \( I \) is the identity matrix \( \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \cdot A = \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} \cdot \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} \] Calculating the elements of \( A^2 \): - First row, first column: \[ 3 \cdot 3 + (-2) \cdot 4 = 9 - 8 = 1 \] - First row, second column: \[ 3 \cdot (-2) + (-2) \cdot (-2) = -6 + 4 = -2 \] - Second row, first column: \[ 4 \cdot 3 + (-2) \cdot 4 = 12 - 8 = 4 \] - Second row, second column: \[ 4 \cdot (-2) + (-2) \cdot (-2) = -8 + 4 = -4 \] Thus, we have: \[ A^2 = \begin{pmatrix} 1 & -2 \\ 4 & -4 \end{pmatrix} \] ### Step 2: Calculate \( xA - 2I \) Next, we calculate \( xA - 2I \): \[ xA = x \begin{pmatrix} 3 & -2 \\ 4 & -2 \end{pmatrix} = \begin{pmatrix} 3x & -2x \\ 4x & -2x \end{pmatrix} \] Now, calculate \( 2I \): \[ 2I = 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] Now, we can find \( xA - 2I \): \[ xA - 2I = \begin{pmatrix} 3x & -2x \\ 4x & -2x \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 3x - 2 & -2x \\ 4x & -2x - 2 \end{pmatrix} \] ### Step 3: Set \( A^2 = xA - 2I \) Now, we set \( A^2 \) equal to \( xA - 2I \): \[ \begin{pmatrix} 1 & -2 \\ 4 & -4 \end{pmatrix} = \begin{pmatrix} 3x - 2 & -2x \\ 4x & -2x - 2 \end{pmatrix} \] ### Step 4: Create equations from the matrix equality From the matrix equality, we can create the following equations: 1. \( 3x - 2 = 1 \) 2. \( -2x = -2 \) 3. \( 4x = 4 \) 4. \( -2x - 2 = -4 \) ### Step 5: Solve the equations **From equation 1:** \[ 3x - 2 = 1 \implies 3x = 3 \implies x = 1 \] **From equation 2:** \[ -2x = -2 \implies x = 1 \] **From equation 3:** \[ 4x = 4 \implies x = 1 \] **From equation 4:** \[ -2x - 2 = -4 \implies -2x = -2 \implies x = 1 \] All equations confirm that \( x = 1 \). ### Final Answer Thus, the value of \( x \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If A=[(4 ,3 ),(2 ,5)] , find x and y such that A^2-x A+y I=O .

(i) if A=[{:(1,-1),(2,3):}], then show that A^(2)-4A+5I=O. (ii) if f(x)=x^(2)+3x-5and A=[{:(2,-1),(4,3):}], then find f(A).

If A=[{:(,4,2),(,1,1):}] , find (A-2I) (A-3I) .

If A A=[3-2 4-2] and I=[1 0 0 1] , find k so that A^2=k A-2I .

If A A=[[3,-2],[ 4,-2]] and I=[[1, 0],[ 0, 1]] , find k so that A^2=k A-2I .

If A=[{:(1,2),(2,3):}] and A^(2)-xA=I_(2) then the value of x is

If A=[(1,3),(3,4)] and A^2-xA-I=0 then find x.

Given A= [(3,6),(-2,-8)] and B= [-2" " 16] , find the matrix X such that XA= B

Given the matrices A and B as A=[(1,-1),(4,-1)] and B=[(1,-1),(2,-2)] . The two matrices X and Y are such that XA=B and AY=B , then find the matrix 3(X+Y)

If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence find a matrix X such that A^2-5A+4I+X=O .