Home
Class 12
MATHS
Evaluate: lim(x to (pi)/4)(cos7x + cos5x...

Evaluate: `lim_(x to (pi)/4)(cos7x + cos5x)/(sin7x - sin5x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{\cos(7x) + \cos(5x)}{\sin(7x) - \sin(5x)}, \] we can use trigonometric identities to simplify the expression. ### Step 1: Apply the cosine addition identity We know that \[ \cos a + \cos b = 2 \cos\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right). \] Using this identity for \(\cos(7x) + \cos(5x)\): - Let \(a = 7x\) and \(b = 5x\). - Then, \(a + b = 12x\) and \(a - b = 2x\). Thus, \[ \cos(7x) + \cos(5x) = 2 \cos\left(6x\right) \cos\left(x\right). \] ### Step 2: Apply the sine subtraction identity We also know that \[ \sin a - \sin b = 2 \cos\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right). \] Using this identity for \(\sin(7x) - \sin(5x)\): - Again, let \(a = 7x\) and \(b = 5x\). - Then, \(a + b = 12x\) and \(a - b = 2x\). Thus, \[ \sin(7x) - \sin(5x) = 2 \cos\left(6x\right) \sin\left(x\right). \] ### Step 3: Substitute back into the limit Now substituting these results back into the limit, we have: \[ \lim_{x \to \frac{\pi}{4}} \frac{2 \cos(6x) \cos(x)}{2 \cos(6x) \sin(x)}. \] The \(2 \cos(6x)\) terms cancel out (as long as \(\cos(6x) \neq 0\), which is valid in the limit as \(x\) approaches \(\frac{\pi}{4}\)): \[ = \lim_{x \to \frac{\pi}{4}} \frac{\cos(x)}{\sin(x)} = \lim_{x \to \frac{\pi}{4}} \cot(x). \] ### Step 4: Evaluate the limit Now, we can evaluate the limit: \[ \cot\left(\frac{\pi}{4}\right) = 1. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

Evaluate lim_(x to (pi)/(4)) ("sin" x - cos x)/(x - (pi)/(4))

Evaluate lim_(xto(pi)/(4)) (1-sin2x)/(1+cos4x).

Prove that (cos7x+cos5x)/(sin7x-sin5x)=cotx .

Prove that : (cos 7x + cos 5x)/(sin 7x - sin 5x) = cot x

The value of lim_(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) equals

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

Evaluate: lim_(xrarr(pi)/(4)) (sin x -cos x)/(x-(pi)/(4))

Evaluate: int(sin^5x)/(cos^4x)dx

Evaluate: int(sin^5x)/(cos^4x)\ dx