Home
Class 12
MATHS
Solve the following system of equations ...

Solve the following system of equations using matrix method:
`2/x + 3/y + 10/z = 4`
`4/x - 6/y + 5/z=1`
`6/x + 9/y - 20/z=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the system of equations using the matrix method, we will first rewrite the equations in terms of new variables. Let's denote: - \( a = \frac{1}{x} \) - \( b = \frac{1}{y} \) - \( c = \frac{1}{z} \) The given equations are: 1. \( 2a + 3b + 10c = 4 \) 2. \( 4a - 6b + 5c = 1 \) 3. \( 6a + 9b - 20c = 2 \) ### Step 1: Write the equations in matrix form We can express the system of equations in the matrix form \( A \mathbf{x} = \mathbf{b} \), where: \[ A = \begin{pmatrix} 2 & 3 & 10 \\ 4 & -6 & 5 \\ 6 & 9 & -20 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \] ### Step 2: Calculate the determinant of matrix \( A \) To check if the matrix \( A \) is non-singular, we need to calculate its determinant. \[ \text{det}(A) = 2 \begin{vmatrix} -6 & 5 \\ 9 & -20 \end{vmatrix} - 3 \begin{vmatrix} 4 & 5 \\ 6 & -20 \end{vmatrix} + 10 \begin{vmatrix} 4 & -6 \\ 6 & 9 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} -6 & 5 \\ 9 & -20 \end{vmatrix} = (-6)(-20) - (5)(9) = 120 - 45 = 75 \) 2. \( \begin{vmatrix} 4 & 5 \\ 6 & -20 \end{vmatrix} = (4)(-20) - (5)(6) = -80 - 30 = -110 \) 3. \( \begin{vmatrix} 4 & -6 \\ 6 & 9 \end{vmatrix} = (4)(9) - (-6)(6) = 36 + 36 = 72 \) Now substituting back into the determinant calculation: \[ \text{det}(A) = 2(75) - 3(-110) + 10(72) = 150 + 330 + 720 = 1200 \] Since \( \text{det}(A) \neq 0 \), the matrix \( A \) is non-singular. ### Step 3: Find the inverse of matrix \( A \) To find the inverse \( A^{-1} \), we will use the formula \( A^{-1} = \frac{1}{\text{det}(A)} \text{adj}(A) \). First, we find the cofactor matrix of \( A \): \[ \text{Cof}(A) = \begin{pmatrix} 75 & 110 & 72 \\ 150 & -100 & 0 \\ 30 & -24 & -24 \end{pmatrix} \] Now, we take the transpose to get the adjugate: \[ \text{adj}(A) = \begin{pmatrix} 75 & 150 & 30 \\ 110 & -100 & -24 \\ 72 & 0 & -24 \end{pmatrix} \] Now, we can find \( A^{-1} \): \[ A^{-1} = \frac{1}{1200} \begin{pmatrix} 75 & 150 & 30 \\ 110 & -100 & -24 \\ 72 & 0 & -24 \end{pmatrix} \] ### Step 4: Solve for \( \mathbf{x} \) Now, we can find \( \mathbf{x} \) using \( \mathbf{x} = A^{-1} \mathbf{b} \): \[ \mathbf{x} = \frac{1}{1200} \begin{pmatrix} 75 & 150 & 30 \\ 110 & -100 & -24 \\ 72 & 0 & -24 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 2 \end{pmatrix} \] Calculating the product: \[ \begin{pmatrix} 75(4) + 150(1) + 30(2) \\ 110(4) - 100(1) - 24(2) \\ 72(4) + 0(1) - 24(2) \end{pmatrix} = \begin{pmatrix} 300 + 150 + 60 \\ 440 - 100 - 48 \\ 288 - 48 \end{pmatrix} = \begin{pmatrix} 510 \\ 292 \\ 240 \end{pmatrix} \] Thus, \[ \mathbf{x} = \frac{1}{1200} \begin{pmatrix} 510 \\ 292 \\ 240 \end{pmatrix} = \begin{pmatrix} \frac{51}{120} \\ \frac{29.2}{120} \\ \frac{24}{120} \end{pmatrix} = \begin{pmatrix} \frac{17}{40} \\ \frac{73}{300} \\ \frac{1}{5} \end{pmatrix} \] ### Step 5: Find \( x, y, z \) Since we defined \( a = \frac{1}{x} \), \( b = \frac{1}{y} \), and \( c = \frac{1}{z} \): \[ x = \frac{1}{a} = \frac{40}{17}, \quad y = \frac{1}{b} = \frac{300}{73}, \quad z = \frac{1}{c} = 5 \] ### Final Answer Thus, the solution to the system of equations is: \[ x = 2, \quad y = 3, \quad z = 5 \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Solve the following system of equations, using matrix method. x+2y+z=7,x+3z=11 ,2x-3y=1

Solve the following system of equations, using matrix method. x+2y+z=7,x+3z=11 ,2x-3y=1

Solve the following system of equations by matrix method. 3x-2y + 3z= 8 2x + y-z = 1 4x-3y + 2z = 4

Solve the following system of equations by matrix method: x-y+z=2,\ \ 2x-y=0, \ \ 2y-z=1

Solve the following system of equations by matrix method: 2x+6y=2,\ \ 3x-z=-8,\ \ x-y+z=-3

Solve the following system of equations by matrix method: 2x+y+z=2,\ \ x+3y-z=5,\ \ 3x+y-2z=6

Solve the following system of linear equations using matrix method : 3x + y + z = 1, 2x + 2z =0, 5x + y + 2z = 0 .

Solve the following system of equations by matrix method: x+y-z=3 , 2x+3y+z=10 ,3x-y-7z=1

Solve the following system of equation by matrix method x + y - 2z = 1; x - y + z = 0; 2x + 3y - 4z = 2,

Solve the following system of equations by matrix method : x+y-2z=3 , 2x+3y+z=10 and 3x-y-7z=1