Home
Class 12
MATHS
Prove that: 2tan^(-1)(1/5) + sec^(-1)...

Prove that:
`2tan^(-1)(1/5) + sec^(-1)((5sqrt(2))/7) + 2tan^(-1) (1/8) = pi/4`

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: 2sin^(-1)(3/5)=tan^(-1)((24)/7)

Prove that: tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove that : tan^(-1)(1/5)+tan^(-1)(1/7)+tan^(-1)(1/3)+tan^(-1)(1/8)=pi/4

Prove the following: 4tan^(-1)1/5-tan^(-1)1/(70)+tan^(-1)1/(99)=pi/4 2t a n^(-1)1/5+s e c^(-1)(5sqrt(2))/7+2tan^(-1)1/8=pi/4

Prove that: 2tan^(-1)(1/2)+tan^(-1)(1/7)=tan^(-1)(31/17)

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

Prove that 4 tan^(-1) . 1/5 - tan^(-1) . 1/70 + tan^(-1) . 1/99 = pi/4

Prove that tan^(-1).(1)/(sqrt2) + sin^(-1).(1)/(sqrt5) - cos^(-1).(1)/(sqrt10) = -pi + cot^(-1) ((1 + sqrt2)/(1 - sqrt2))

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)