Home
Class 12
MATHS
Evaluate: int(x^(2)-5x-1)dx...

Evaluate: `int(x^(2)-5x-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int (x^2 - 5x - 1) \, dx \), we will integrate each term of the polynomial separately. ### Step-by-Step Solution: 1. **Write the integral**: \[ \int (x^2 - 5x - 1) \, dx \] 2. **Break down the integral**: We can separate the integral into three parts: \[ \int x^2 \, dx - \int 5x \, dx - \int 1 \, dx \] 3. **Integrate each term**: - For \( \int x^2 \, dx \): \[ \int x^2 \, dx = \frac{x^3}{3} \] - For \( \int 5x \, dx \): \[ \int 5x \, dx = 5 \cdot \frac{x^2}{2} = \frac{5x^2}{2} \] - For \( \int 1 \, dx \): \[ \int 1 \, dx = x \] 4. **Combine the results**: Putting it all together: \[ \int (x^2 - 5x - 1) \, dx = \frac{x^3}{3} - \frac{5x^2}{2} - x + C \] where \( C \) is the constant of integration. ### Final Answer: \[ \int (x^2 - 5x - 1) \, dx = \frac{x^3}{3} - \frac{5x^2}{2} - x + C \]
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate int (x^(2)+5x-1)/(sqrt(x))dx

Evaluate: int_1^3(2x^2+5x)dx

Evaluate: int_1^3(2x^2+5x)dx

Evaluate: int_0^1(3x^2+5x)dx

Evaluate: int(x^5)/(x+1)\ dx

Evaluate int(7x^2-5x)\dx

Evaluate: int(1-x+x^2)dx

Evaluate int\(x^2-5x+6)\dx

Evaluate: int(5x^2-1)/(x(x-1)(x+1))\ dx

Evaluate: int1/(x^2+4x-5)\ dx