Home
Class 12
MATHS
The following observations are given : (...

The following observations are given : (1,4), (2, 8), (3, 2), (4,12), (5,10), (6,14), (7,16), (8,6), (9,18).
Estimate the value ofy when the value of x is 10 and also estimate the value ofx when the value of y = 5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Organize the Data We have the following observations: - \( (1, 4) \) - \( (2, 8) \) - \( (3, 2) \) - \( (4, 12) \) - \( (5, 10) \) - \( (6, 14) \) - \( (7, 16) \) - \( (8, 6) \) - \( (9, 18) \) Let's create a table for these values of \( x \) and \( y \): | \( x \) | \( y \) | |---------|---------| | 1 | 4 | | 2 | 8 | | 3 | 2 | | 4 | 12 | | 5 | 10 | | 6 | 14 | | 7 | 16 | | 8 | 6 | | 9 | 18 | ### Step 2: Calculate the Mean Values Calculate the mean of \( x \) and \( y \): \[ \text{Mean of } x ( \bar{x} ) = \frac{\sum x}{n} = \frac{1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9}{9} = \frac{45}{9} = 5 \] \[ \text{Mean of } y ( \bar{y} ) = \frac{\sum y}{n} = \frac{4 + 8 + 2 + 12 + 10 + 14 + 16 + 6 + 18}{9} = \frac{90}{9} = 10 \] ### Step 3: Calculate Deviations from the Mean Now, we will calculate the deviations from the mean for both \( x \) and \( y \): | \( x \) | \( y \) | \( x - \bar{x} \) | \( y - \bar{y} \) | |---------|---------|-------------------|-------------------| | 1 | 4 | 1 - 5 = -4 | 4 - 10 = -6 | | 2 | 8 | 2 - 5 = -3 | 8 - 10 = -2 | | 3 | 2 | 3 - 5 = -2 | 2 - 10 = -8 | | 4 | 12 | 4 - 5 = -1 | 12 - 10 = 2 | | 5 | 10 | 5 - 5 = 0 | 10 - 10 = 0 | | 6 | 14 | 6 - 5 = 1 | 14 - 10 = 4 | | 7 | 16 | 7 - 5 = 2 | 16 - 10 = 6 | | 8 | 6 | 8 - 5 = 3 | 6 - 10 = -4 | | 9 | 18 | 9 - 5 = 4 | 18 - 10 = 8 | ### Step 4: Calculate \( x^2 \), \( y^2 \), and \( xy \) Now, we will calculate \( x^2 \), \( y^2 \), and \( xy \): | \( x \) | \( y \) | \( x - \bar{x} \) | \( y - \bar{y} \) | \( (x - \bar{x})^2 \) | \( (y - \bar{y})^2 \) | \( (x - \bar{x})(y - \bar{y}) \) | |---------|---------|-------------------|-------------------|------------------------|------------------------|-----------------------------------| | 1 | 4 | -4 | -6 | 16 | 36 | 24 | | 2 | 8 | -3 | -2 | 9 | 4 | 6 | | 3 | 2 | -2 | -8 | 4 | 64 | 16 | | 4 | 12 | -1 | 2 | 1 | 4 | -2 | | 5 | 10 | 0 | 0 | 0 | 0 | 0 | | 6 | 14 | 1 | 4 | 1 | 16 | 4 | | 7 | 16 | 2 | 6 | 4 | 36 | 12 | | 8 | 6 | 3 | -4 | 9 | 16 | -12 | | 9 | 18 | 4 | 8 | 16 | 64 | 32 | ### Step 5: Calculate Summations Now we will calculate the summations: \[ \sum (x - \bar{x})^2 = 16 + 9 + 4 + 1 + 0 + 1 + 4 + 9 + 16 = 60 \] \[ \sum (y - \bar{y})^2 = 36 + 4 + 64 + 4 + 0 + 16 + 36 + 16 + 64 = 240 \] \[ \sum (x - \bar{x})(y - \bar{y}) = 24 + 6 + 16 - 2 + 0 + 4 + 12 - 12 + 32 = 80 \] ### Step 6: Calculate Regression Coefficients The regression coefficient \( b_{yx} \) is given by: \[ b_{yx} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} = \frac{80}{60} = \frac{4}{3} \approx 1.33 \] ### Step 7: Formulate the Regression Equation Using the regression equation: \[ y - \bar{y} = b_{yx}(x - \bar{x}) \] Substituting the values: \[ y - 10 = \frac{4}{3}(x - 5) \] Rearranging gives: \[ y = \frac{4}{3}x + 10 - \frac{20}{3} = \frac{4}{3}x + \frac{10}{3} \] ### Step 8: Estimate \( y \) when \( x = 10 \) Substituting \( x = 10 \): \[ y = \frac{4}{3}(10) + \frac{10}{3} = \frac{40}{3} + \frac{10}{3} = \frac{50}{3} \approx 16.67 \] ### Step 9: Estimate \( x \) when \( y = 5 \) Using the regression equation of \( x \) on \( y \): \[ x - \bar{x} = b_{xy}(y - \bar{y}) \] Where \( b_{xy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (y - \bar{y})^2} = \frac{80}{240} = \frac{1}{3} \) Thus, the equation becomes: \[ x - 5 = \frac{1}{3}(y - 10) \] Substituting \( y = 5 \): \[ x - 5 = \frac{1}{3}(5 - 10) = \frac{1}{3}(-5) = -\frac{5}{3} \] So, \[ x = 5 - \frac{5}{3} = \frac{15}{3} - \frac{5}{3} = \frac{10}{3} \approx 3.33 \] ### Final Answers - The estimated value of \( y \) when \( x = 10 \) is approximately **16.67**. - The estimated value of \( x \) when \( y = 5 \) is approximately **3.33**.
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find the equation of the regression line of y on x, if the observation (x,y) are as follows : (1, 4), (2, 8), (3, 2), (4, 12), (5, 10), (6, 14), (7, 16), (8, 6), (9, 18) Also, find the estimated value of y when x = 14.

Given that the observations are : (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8) . Find the two lines of regression and estimate the value of y when x = 13.5.

Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13.5.

If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x

If the line of regression on x on y is 40x - 18y = 214 , then estimate the value of x when y=3

What is the value of x when (4x ) /(5) + 7=6?

If the mean of 6, 4, 7, p and 10 is 8, find the value of p.

There are n sets of observation given as (1),(2, 3), (4, 5, 6), (7, 8, 9, 10),….. The mean of the 13^("th") set of observation is equal to

If 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) , then find the value of x+y.

If f={(1,4),(2,5),(3,6)} and g={(4,8),(5,7),(6,9)} , then gof is