The following observations are given : (1,4), (2, 8), (3, 2), (4,12), (5,10), (6,14), (7,16), (8,6), (9,18).
Estimate the value ofy when the value of x is 10 and also estimate the value ofx when the value of y = 5
The following observations are given : (1,4), (2, 8), (3, 2), (4,12), (5,10), (6,14), (7,16), (8,6), (9,18).
Estimate the value ofy when the value of x is 10 and also estimate the value ofx when the value of y = 5
Estimate the value ofy when the value of x is 10 and also estimate the value ofx when the value of y = 5
Text Solution
AI Generated Solution
The correct Answer is:
To solve the problem, we will follow these steps:
### Step 1: Organize the Data
We have the following observations:
- \( (1, 4) \)
- \( (2, 8) \)
- \( (3, 2) \)
- \( (4, 12) \)
- \( (5, 10) \)
- \( (6, 14) \)
- \( (7, 16) \)
- \( (8, 6) \)
- \( (9, 18) \)
Let's create a table for these values of \( x \) and \( y \):
| \( x \) | \( y \) |
|---------|---------|
| 1 | 4 |
| 2 | 8 |
| 3 | 2 |
| 4 | 12 |
| 5 | 10 |
| 6 | 14 |
| 7 | 16 |
| 8 | 6 |
| 9 | 18 |
### Step 2: Calculate the Mean Values
Calculate the mean of \( x \) and \( y \):
\[
\text{Mean of } x ( \bar{x} ) = \frac{\sum x}{n} = \frac{1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9}{9} = \frac{45}{9} = 5
\]
\[
\text{Mean of } y ( \bar{y} ) = \frac{\sum y}{n} = \frac{4 + 8 + 2 + 12 + 10 + 14 + 16 + 6 + 18}{9} = \frac{90}{9} = 10
\]
### Step 3: Calculate Deviations from the Mean
Now, we will calculate the deviations from the mean for both \( x \) and \( y \):
| \( x \) | \( y \) | \( x - \bar{x} \) | \( y - \bar{y} \) |
|---------|---------|-------------------|-------------------|
| 1 | 4 | 1 - 5 = -4 | 4 - 10 = -6 |
| 2 | 8 | 2 - 5 = -3 | 8 - 10 = -2 |
| 3 | 2 | 3 - 5 = -2 | 2 - 10 = -8 |
| 4 | 12 | 4 - 5 = -1 | 12 - 10 = 2 |
| 5 | 10 | 5 - 5 = 0 | 10 - 10 = 0 |
| 6 | 14 | 6 - 5 = 1 | 14 - 10 = 4 |
| 7 | 16 | 7 - 5 = 2 | 16 - 10 = 6 |
| 8 | 6 | 8 - 5 = 3 | 6 - 10 = -4 |
| 9 | 18 | 9 - 5 = 4 | 18 - 10 = 8 |
### Step 4: Calculate \( x^2 \), \( y^2 \), and \( xy \)
Now, we will calculate \( x^2 \), \( y^2 \), and \( xy \):
| \( x \) | \( y \) | \( x - \bar{x} \) | \( y - \bar{y} \) | \( (x - \bar{x})^2 \) | \( (y - \bar{y})^2 \) | \( (x - \bar{x})(y - \bar{y}) \) |
|---------|---------|-------------------|-------------------|------------------------|------------------------|-----------------------------------|
| 1 | 4 | -4 | -6 | 16 | 36 | 24 |
| 2 | 8 | -3 | -2 | 9 | 4 | 6 |
| 3 | 2 | -2 | -8 | 4 | 64 | 16 |
| 4 | 12 | -1 | 2 | 1 | 4 | -2 |
| 5 | 10 | 0 | 0 | 0 | 0 | 0 |
| 6 | 14 | 1 | 4 | 1 | 16 | 4 |
| 7 | 16 | 2 | 6 | 4 | 36 | 12 |
| 8 | 6 | 3 | -4 | 9 | 16 | -12 |
| 9 | 18 | 4 | 8 | 16 | 64 | 32 |
### Step 5: Calculate Summations
Now we will calculate the summations:
\[
\sum (x - \bar{x})^2 = 16 + 9 + 4 + 1 + 0 + 1 + 4 + 9 + 16 = 60
\]
\[
\sum (y - \bar{y})^2 = 36 + 4 + 64 + 4 + 0 + 16 + 36 + 16 + 64 = 240
\]
\[
\sum (x - \bar{x})(y - \bar{y}) = 24 + 6 + 16 - 2 + 0 + 4 + 12 - 12 + 32 = 80
\]
### Step 6: Calculate Regression Coefficients
The regression coefficient \( b_{yx} \) is given by:
\[
b_{yx} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2} = \frac{80}{60} = \frac{4}{3} \approx 1.33
\]
### Step 7: Formulate the Regression Equation
Using the regression equation:
\[
y - \bar{y} = b_{yx}(x - \bar{x})
\]
Substituting the values:
\[
y - 10 = \frac{4}{3}(x - 5)
\]
Rearranging gives:
\[
y = \frac{4}{3}x + 10 - \frac{20}{3} = \frac{4}{3}x + \frac{10}{3}
\]
### Step 8: Estimate \( y \) when \( x = 10 \)
Substituting \( x = 10 \):
\[
y = \frac{4}{3}(10) + \frac{10}{3} = \frac{40}{3} + \frac{10}{3} = \frac{50}{3} \approx 16.67
\]
### Step 9: Estimate \( x \) when \( y = 5 \)
Using the regression equation of \( x \) on \( y \):
\[
x - \bar{x} = b_{xy}(y - \bar{y})
\]
Where \( b_{xy} = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (y - \bar{y})^2} = \frac{80}{240} = \frac{1}{3} \)
Thus, the equation becomes:
\[
x - 5 = \frac{1}{3}(y - 10)
\]
Substituting \( y = 5 \):
\[
x - 5 = \frac{1}{3}(5 - 10) = \frac{1}{3}(-5) = -\frac{5}{3}
\]
So,
\[
x = 5 - \frac{5}{3} = \frac{15}{3} - \frac{5}{3} = \frac{10}{3} \approx 3.33
\]
### Final Answers
- The estimated value of \( y \) when \( x = 10 \) is approximately **16.67**.
- The estimated value of \( x \) when \( y = 5 \) is approximately **3.33**.
Topper's Solved these Questions
Similar Questions
Explore conceptually related problems
Find the equation of the regression line of y on x, if the observation (x,y) are as follows : (1, 4), (2, 8), (3, 2), (4, 12), (5, 10), (6, 14), (7, 16), (8, 6), (9, 18) Also, find the estimated value of y when x = 14.
Given that the observations are : (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8) . Find the two lines of regression and estimate the value of y when x = 13.5.
Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13.5.
If [(2,3),(5,7)] [(1,-3),(-2,4)]=[(-4,6),(-9,x)], write the value of x
If the line of regression on x on y is 40x - 18y = 214 , then estimate the value of x when y=3
What is the value of x when (4x ) /(5) + 7=6?
If the mean of 6, 4, 7, p and 10 is 8, find the value of p.
There are n sets of observation given as (1),(2, 3), (4, 5, 6), (7, 8, 9, 10),….. The mean of the 13^("th") set of observation is equal to
If 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) , then find the value of x+y.
If f={(1,4),(2,5),(3,6)} and g={(4,8),(5,7),(6,9)} , then gof is
ICSE-MATHEMATICS-2011-SECTION-C
- The following observations are given : (1,4), (2, 8), (3, 2), (4,12), ...
Text Solution
|
- The price of a tape recorder is Rs 1,661 . A person purchases it by m...
Text Solution
|
- A manufacturer manufactures two types of tea-cups, A and B. Three mach...
Text Solution
|
- If the difference between Banker's discount and True discount of a bil...
Text Solution
|
- Given that the total cost junction for x units of a commodity is: C(x)...
Text Solution
|
- The price quotations of four different commodities for 2001 and 2009 a...
Text Solution
|
- The profit of a soft drink firm (in thousands of rupees) during each m...
Text Solution
|