Home
Class 12
MATHS
If vecaandvecb are non-collinear vector,...

If `vecaandvecb` are non-collinear vector, find the value of x such that the vectors `vecalpha=(x-2)veca+vecbandvecbeta=(3+2x)veca-2vecb` are collinear.

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) such that the vectors \( \vec{\alpha} \) and \( \vec{\beta} \) are collinear, we start with the definitions of the vectors: \[ \vec{\alpha} = (x-2)\vec{a} + \vec{b} \] \[ \vec{\beta} = (3 + 2x)\vec{a} - 2\vec{b} \] ### Step 1: Set up the collinearity condition For the vectors \( \vec{\alpha} \) and \( \vec{\beta} \) to be collinear, there must exist a scalar \( \lambda \) such that: \[ \vec{\alpha} = \lambda \vec{\beta} \] ### Step 2: Substitute the expressions for \( \vec{\alpha} \) and \( \vec{\beta} \) Substituting the expressions we have: \[ (x-2)\vec{a} + \vec{b} = \lambda \left( (3 + 2x)\vec{a} - 2\vec{b} \right) \] ### Step 3: Expand the right-hand side Expanding the right-hand side gives: \[ (x-2)\vec{a} + \vec{b} = \lambda(3 + 2x)\vec{a} - 2\lambda\vec{b} \] ### Step 4: Rearrange the equation Rearranging the equation, we have: \[ (x-2)\vec{a} + \vec{b} = (3\lambda + 2\lambda x)\vec{a} - 2\lambda\vec{b} \] ### Step 5: Compare coefficients of \( \vec{a} \) and \( \vec{b} \) Now, we can compare the coefficients of \( \vec{a} \) and \( \vec{b} \) on both sides: 1. Coefficients of \( \vec{a} \): \[ x - 2 = 3\lambda + 2\lambda x \] 2. Coefficients of \( \vec{b} \): \[ 1 = -2\lambda \] ### Step 6: Solve for \( \lambda \) From the second equation, we can solve for \( \lambda \): \[ -2\lambda = 1 \implies \lambda = -\frac{1}{2} \] ### Step 7: Substitute \( \lambda \) into the first equation Now substituting \( \lambda \) back into the first equation: \[ x - 2 = 3\left(-\frac{1}{2}\right) + 2\left(-\frac{1}{2}\right)x \] This simplifies to: \[ x - 2 = -\frac{3}{2} - x \] ### Step 8: Solve for \( x \) Now, we can solve for \( x \): \[ x + x = -\frac{3}{2} + 2 \] \[ 2x = -\frac{3}{2} + \frac{4}{2} \] \[ 2x = \frac{1}{2} \] \[ x = \frac{1}{4} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{1}{4}} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - C|8 Videos
  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - C|8 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2011

    ICSE|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

If vec aa n d vec b are non-collinear vectors, find the value of x for which the vectors vecalpha=(2x+1) vec a- vec b""a n d"" vecbeta=(x-2)"" vec a+ vec b are collinear.

The vectors veca and vecb are non collinear. Find for what value of x the vectors vecc=(x-2)veca+vecb and vecd=(2x+1) veca-vecb are collinear.?

if veca and vecb non-zero ad non-collinear vectors, then

If veca and vecb are two non collinear vectors and vecu = veca-(veca.vecb).vecb and vecv=veca x vecb then vecv is

If veca,vecb are non-collinear vectors, then [(veca,vecb,hati)]hati+[(veca,vecb,hatj)]hatj+[(veca,vecb,hatk)]hatk=

If veca and vecb are non-zero, non parallel vectors, then the value of |veca + vecb+veca xx vecb|^(2) +|veca + vecb-veca xx vecb|^(2) equals

If veca and vecb are two non collinear unit vectors and |veca+vecb|=sqrt(3) then find the value of (veca-vecb).(2veca+vecb)

If veca,vecb,vecc are three non zero vectors (no two of which are collinear) such that the pairs of vectors (veca+vecb,vecc) and (vecb+vecc,veca) are colliner, then what is the value of veca+vecb+vecc ? (A) veca is parrallel to vecb (B) vecb (C) vecc (D) vec0

i. If veca, vecb and vecc are non-coplanar vectors, prove that vectors 3veca-7vecb-4vecc, 3veca-2vecb+vecc and veca+vecb+2vecc are coplanar.

Given that veca and vecb are two non zero vectors, then the value of (veca + vecb) xx (veca-vecb) is,