Home
Class 12
MATHS
Find the equation of the regression line...

Find the equation of the regression line of y on x, if the observation (x,y) are as follows :
`(1, 4), (2, 8), (3, 2), (4, 12), (5, 10), (6, 14), (7, 16), (8, 6), (9, 18)`
Also, find the estimated value of y when x = 14.

Text Solution

AI Generated Solution

The correct Answer is:
To find the equation of the regression line of \( y \) on \( x \) based on the given observations, we will follow these steps: ### Step 1: List the Observations The observations provided are: \[ (1, 4), (2, 8), (3, 2), (4, 12), (5, 10), (6, 14), (7, 16), (8, 6), (9, 18) \] ### Step 2: Calculate the Necessary Summations We need to calculate the following: - \( \Sigma x \) - \( \Sigma y \) - \( \Sigma xy \) - \( \Sigma x^2 \) - \( \Sigma y^2 \) **Calculations:** 1. **Sum of \( x \)**: \[ \Sigma x = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 \] 2. **Sum of \( y \)**: \[ \Sigma y = 4 + 8 + 2 + 12 + 10 + 14 + 16 + 6 + 18 = 90 \] 3. **Sum of \( xy \)**: \[ \Sigma xy = (1 \cdot 4) + (2 \cdot 8) + (3 \cdot 2) + (4 \cdot 12) + (5 \cdot 10) + (6 \cdot 14) + (7 \cdot 16) + (8 \cdot 6) + (9 \cdot 18) \] \[ = 4 + 16 + 6 + 48 + 50 + 84 + 112 + 48 + 162 = 490 \] 4. **Sum of \( x^2 \)**: \[ \Sigma x^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2 = 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 = 285 \] 5. **Sum of \( y^2 \)**: \[ \Sigma y^2 = 4^2 + 8^2 + 2^2 + 12^2 + 10^2 + 14^2 + 16^2 + 6^2 + 18^2 \] \[ = 16 + 64 + 4 + 144 + 100 + 196 + 256 + 36 + 324 = 1140 \] ### Step 3: Calculate the Regression Coefficient \( b_{yx} \) The formula for the regression coefficient \( b_{yx} \) is: \[ b_{yx} = \frac{\Sigma xy - \frac{\Sigma x \cdot \Sigma y}{n}}{\Sigma x^2 - \frac{(\Sigma x)^2}{n}} \] Where \( n \) is the number of observations (which is 9). **Substituting the values:** \[ b_{yx} = \frac{490 - \frac{45 \cdot 90}{9}}{285 - \frac{45^2}{9}} \] \[ = \frac{490 - 450}{285 - 225} = \frac{40}{60} = \frac{2}{3} \] ### Step 4: Calculate \( \bar{x} \) and \( \bar{y} \) \[ \bar{x} = \frac{\Sigma x}{n} = \frac{45}{9} = 5 \] \[ \bar{y} = \frac{\Sigma y}{n} = \frac{90}{9} = 10 \] ### Step 5: Write the Equation of the Regression Line The equation of the regression line is given by: \[ y - \bar{y} = b_{yx}(x - \bar{x}) \] Substituting the values: \[ y - 10 = \frac{2}{3}(x - 5) \] Rearranging gives: \[ y = \frac{2}{3}x + \left(10 - \frac{2}{3} \cdot 5\right) \] \[ y = \frac{2}{3}x + \left(10 - \frac{10}{3}\right) = \frac{2}{3}x + \frac{30}{3} - \frac{10}{3} = \frac{2}{3}x + \frac{20}{3} \] ### Step 6: Find the Estimated Value of \( y \) when \( x = 14 \) Substituting \( x = 14 \) into the regression equation: \[ y = \frac{2}{3}(14) + \frac{20}{3} = \frac{28}{3} + \frac{20}{3} = \frac{48}{3} = 16 \] ### Final Result The equation of the regression line of \( y \) on \( x \) is: \[ y = \frac{2}{3}x + \frac{20}{3} \] And the estimated value of \( y \) when \( x = 14 \) is: \[ y = 16 \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - B|8 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2011

    ICSE|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

The following observations are given : (1,4), (2, 8), (3, 2), (4,12), (5,10), (6,14), (7,16), (8,6), (9,18). Estimate the value ofy when the value of x is 10 and also estimate the value ofx when the value of y = 5

Given that the observations are: (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8). Find the two lines of regression and estimate the value of y when x = 13.5.

Given that the observations are : (9, -4), (10, -3), (11, -1), (12, 0), (13, 1), (14, 3), (15, 5), (16, 8) . Find the two lines of regression and estimate the value of y when x = 13.5.

Find the equations of the two lines of regression for the following observations : (3, 6), (4, 5), (5, 4), (6,3), (7,2). Find the estimation of y for x = 2.5.

Find the line of regression of y on x from the following table : Hence estimate the value of y when x=6.

If 2((1,3),(0,x))+((y,0),(1,2))=((5,6),(1,8)) , then find the value of x+y.

Find the equation of the asymptotes of the hyperbola 3x^2+10 x y+9y^2+14 x+22 y+7=0

Find the equations of the normal to the curve y=x^3+2x+6 which are parallel to the line x+14 y+4=0.

Find the value of x^3-8y^3-36 x y-216 , when x=2y+6.

Find the value of x^3-8y^3-36 x y-216 , when x=2y+6.